原文链接 深度神经网络 (DNN) 培训属于计算密集型项目,需要在现代计算平台上花费数日或数周的时间方可完成. 在最近的一篇文章<基于英特尔® 至强™ E5 产品家族的单节点 Caffe 评分和培训>中,我们展示了基于 AlexNet 拓扑的 Caffe* 框架的性能提升 10 倍,单节点培训时间减少到 5 天. 英特尔继续履行 Pradeep Dubey 的博客中列出的机器学习愿景,在本篇技术预览中,我们将展示如何在多节点.分布式内存环境中将 Caffe 的培训时间从数日减少为数个小时.  …
迎战AMD 7nm 64核EPYC 英特尔至强也玩起了胶水以及性价比 Intel 最强CPU 从最开始的双核 到现在的 28核 发展迅猛. https://www.cnbeta.com/articles/tech/833859.htm 在今天的数据中心创新日上,英特尔推出了一大堆面向数据中心市场的新产品,包括第二代Xeon Scalable处理器.Optan DC内存.30TB的QLC硬盘.10nm工艺Agilex FPGA芯片.100Gbps网络芯片等等,展现了英特尔在数据中心市场上强大的创新…
英特尔与 Facebook 曾联手合作,在多卡训练工作负载中验证了 BFloat16 (BF16) 的优势:在不修改训练超参数的情况下,BFloat16 与单精度 32 位浮点数 (FP32) 得到了相同的准确率.现在,英特尔发布了第三代英特尔 至强 可扩展处理器(代号 Cooper Lake),该处理器集成了支持 BF16 的英特尔 深度学习加速技术(英特尔 DL Boost),可大幅提升训练和推理能力,并且也支持去年推出的英特尔 深度学习 INT8 加速技术. 英特尔和 Facebook 不…
原文链接 在互联网搜索引擎和医疗成像等诸多领域,深度神经网络 (DNN) 应用的重要性正在不断提升. Pradeep Dubey 在其博文中概述了英特尔® 架构机器学习愿景. 英特尔正在实现 Pradeep Dubey 博文中勾勒的机器学习愿景,并正在着手开发软件解决方案以加速执行机器学习工作负载.这些解决方案将包含在未来版本的英特尔® 数学核心函数库(英特尔® MKL)和英特尔® 数据分析加速库(英特尔® DAAL)中. 本技术预览版展示了配备我们正在开发的软件后,英特尔平台将有望实现的性能.…
漏洞数量242:15,英特尔和AMD CPU谁更安全? http://www.eetop.cn/cpu_soc/6946340.html 越来越多的用户开始怀疑哪种处理器可以最好地保护他们的计算机,数据和在线活动,英特尔和AMD之间数十年的长期斗争最近已进入一个新的层面. (图片来源:Shutterstock) 直到最近几年,普通用户和网络安全研究人员都大多担心过多的软件漏洞,而这些漏洞似乎永远不会消失. 随着在2018年1月谷歌批露了Meltdown和Spectre CPU设计缺陷开始,许多用…
英特尔 至强 平台集成 AI 加速构建数据中心智慧网络 SNA 通过 AI 方法来实时感知网络状态,基于网络数据分析来实现自动化部署和风险预测,从而让企业网络能更智能.更高效地为最终用户业务提供支撑.通过引入第二代英特尔 至强 可扩展处理器以及面向英特尔 架构优化的 TensorFlow,SNA的 AI 训练能力获得了大幅提升,让企业网络在应对复杂业务场景时更加游刃有余. 概述 软件定义网络 (Software Defined Network,SDN)得益于以自动化方式对网络资源实施灵活调配的能…
简单介绍 当没有 Wi-Fi 訪问点或互联网訪问时,Android* 应用可能须要对等连接在两台或多台 Android* 设备之间建立连接. 比方,文件共享应用和多人游戏. 该功能可使用 NFC.蓝牙或 Wi-Fi 对等技术来实施. 特定案例中的首选技术须要依据所需的距离.连接速度.功耗和独特的技术特性来决定. 本文将对 Wi-Fi 对等技术进行评估. Wi-Fi 对等(P2P)支持具备适当应用的 Android 4.0 或更高版本号在没有接入点的情况下通过 Wi-Fi 彼此连接. Androi…
大约一年以前,我们 展示 了如何在第三代 英特尔至强可扩展 CPU (即 Ice Lake) 集群上分布式训练 Hugging Face transformers 模型.最近,英特尔发布了代号为 Sapphire Rapids 的第四代至强可扩展 CPU,该 CPU 包含了令人兴奋的深度学习加速新指令. 通过本文,你将会学到如何在一个 AWS Sapphire Rapids 集群上加速一个 PyTorch 训练任务.我们会使用 英特尔 oneAPI 集合通信库 (oneAPI Collectiv…
前一段时间,我们向大家介绍了最新一代的 英特尔至强 CPU (代号 Sapphire Rapids),包括其用于加速深度学习的新硬件特性,以及如何使用它们来加速自然语言 transformer 模型的 分布式微调 和 推理. 本文将向你展示在 Sapphire Rapids CPU 上加速 Stable Diffusion 模型推理的各种技术.后续我们还计划发布对 Stable Diffusion 进行分布式微调的文章. 在撰写本文时,获得 Sapphire Rapids 服务器的最简单方法是使…
现代英特尔® 架构上的 TensorFlow* 优化 转自:https://software.intel.com/zh-cn/articles/tensorflow-optimizations-on-modern-intel-architecture 英特尔:Elmoustapha Ould-Ahmed-Vall,Mahmoud Abuzaina,Md Faijul Amin,Jayaram Bobba,Roman S Dubtsov,Evarist M Fomenko,Mukesh Ganga…