读书会成立属于偶然,一次群里无聊到极点,有人说Pattern Recognition And Machine Learning这本书不错,加之有好友之前推荐过,便发了封群邮件组织这个读书会,采用轮流讲课的方式,如果任务能分配下去就把读书会当作群员的福利开始进行,分配不下去就算了.后来我的几位好友:网神兄.戴玮博士.张巍博士.planktonli老师.常象宇博士纷纷出来支持这个读书会.待任务分配完,设置好主持人和机动队员,我认为就不需要再参与了,但进行不久,也充当机动队员讲了第二.六.九.十一章,…
前言 鉴于机器学习产生自计算机科学,模式识别却起源于工程学.然而,这些活动能被看做同一个领域的两个方面,并且他们同时在这过去的十年间经历了本质上的发展.特别是,当图像模型已经作为一个用来描述和应用概率模型的框架出现时,贝叶斯定理(Bayesian methods)就已经从一个专家级别的知识范畴发展成为主流.通过一系列近似算法推论,例如变分贝叶斯和期望传播(variational Bayes and expectation propagation),贝叶斯定理的实际适用范围也已经大幅度的提高.与此…
不断更新ing......... p141 para 1. 当一个x对应的t值不止一个时,Gaussian nosie assumption就不合适了.因为Gaussian 是unimodal的,这意味着一个x只能对应一个t. p143 section 3.1.2. 解释下本节的一些难懂的细节.首先,作者假设存在一个 N 维的space, 而\(\mathbf{t}\)的每个元素相当于在此space的坐标轴下的系数,所以N维的\(\mathbf{t}\)位于此space中,而且N维的\(\mat…
By Yunduan Cui 这是我自己的PRML学习笔记,目前持续更新中. 第二章 Probability Distributions 概率分布 本章介绍了书中要用到的概率分布模型,是之后章节的基础.已知一个有限集合 \(\{x_{1}, x_{2},..., x_{n}\}\), 概率分布是用来建立一个模型:\(p(x)\). 这一问题又称作密度估计( density estimation ). 主要内容 1. Binomial and Multinomial distributions 面…
Preface 模式识别这个词,以前一直不懂是什么意思,直到今年初,才开始打算读这本广为推荐的书,初步了解到,它的大致意思是从数据中发现特征,规律,属于机器学习的一个分支. 在前言中,阐述了什么是模式识别之后,立刻就提到了贝叶斯方法,感觉贝叶斯方法在模式识别中有一个特别重要的位置.至于为什么,我现在还没体会到. 随后又提到了几个术语:approximate inference algorithms.variational Bayes.expectation propagation,以及model…
转载请注明出处:http://www.cnblogs.com/xbinworld/p/4265530.html 这一篇是整个第五章的精华了,会重点介绍一下Neural Networks的训练方法——反向传播算法(backpropagation,BP),这个算法提出到现在近30年时间都没什么变化,可谓极其经典.也是deep learning的基石之一.还是老样子,下文基本是阅读笔记(句子翻译+自己理解),把书里的内容梳理一遍,也不为什么目的,记下来以后自己可以翻阅用. 5.2 Network Tr…
话说上一次写这个笔记是13年的事情了···那时候忙着实习,找工作,毕业什么的就没写下去了,现在工作了有半年时间也算稳定了,我会继续把这个笔记写完.其实很多章节都看了,不过还没写出来,先从第5章开始吧,第2-4章比较基础,以后再补! 第5章 Neural Networks 在第3章和第4章,我们已经学过线性的回归和分类模型,这些模型由固定的基函数(basis functions)的线性组合组成.这样的模型具有有用的解析和计算特性,但是因为维度灾难(the curse of dimensionali…
模式识别(PR)领域:     关注的是利⽤计算机算法⾃动发现数据中的规律,以及使⽤这些规律采取将数据分类等⾏动. 聚类:目标是发现数据中相似样本的分组. 反馈学习:是在给定的条件下,找到合适的动作,使得奖励达到最大值.  其一个通用的特征是:探索(exploration)和利用(exploitation)的折中. PRML三个重要工具: 1.概率论: 2.决策论: 3.信息论.…
Preface Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science. However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over t…
Introduction The problem of searching for patterns in data is a fundamental one and has a long and successful history. For instance, the extensive astronomical observations of Tycho Brahe in the 16th century allowed Johannes Kepler to discover the em…
现在貌似In Action很流行,各种技术抽象成工程商的Action,可以避开繁琐的内部原理,这本书从实践出发,通俗易懂的解释那些常用的机器学习算法,类似跟<集体智慧编程>.这本书中文出版后,我也立马买了一本读读,全书分别介绍了分类,回归,无监督学习以及降维等基本算法,最后还讲了一下Big Data in Machine Learning,利用MRJob写了SVM算法.代码也很规范,另外作者的代码网址https://github.com/pbharrin/machinelearninginac…
逻辑回归算法是分类算法,虽然这个算法的名字中出现了"回归",但逻辑回归算法实际上是一种分类算法,我们将它作为分类算法使用.. 分类问题:对于每个样本,判断它属于N个类中的那个类或哪几个类.通常我们判定一个样本,若我们预测它的确属于这个类的可能性大于50%,则认为它属于这个类.当然具体选择50%还是70%还是其他要看具体情况,这里先默认50%. 线性回归的局限性在分类问题的例子中变得不可靠:这是一个用来预测肿瘤是否呈阴性的模型,当一个肿瘤的尺寸大于一个数,我们就认为这个肿瘤呈阴性.我们现…
理解卷积公式. 卷积的物理意义. 图像的卷积操作. 卷积神经网络. 卷积的三层含义. 感知机. 感知机的缺陷. 总结. 神经网络. 缺陷. 激活函数…
其实今天只花了一点点时间来学习这本书, 如果模型的参数过多,而训练数据又不足够多的话,就会出现overfitting. overfitting可以通过regularization来解决,贝叶斯方法也可以避免overfitting的出现,实际上在贝叶斯模型里,模型的有效参数数量会自动地根据训练数据集大小来确定. regularization的思想是,对误差函数加入惩罚项,使得系数不会很大.在李宏毅视频中,也讲了这个问题,但是每太理解和明白. 模型的复杂程度应该由要解决的问题的复杂度来决定,而不是测…
用一个例子来讲述regression. 采用sin(2*pi*x)加入微弱的正态分布噪声的方式来获得一些数据,然后用多项式模型来进行拟合. 在评价模型的准确性时,采用了误差函数的方式,用根均方误差的方式来表示误差函数. 很明显,如果模型选错了,无论你怎么拟合,都不可能找到合适的结果.所以,当你面对一堆数据的时候,到底该怎么选择模型呢?(好像台大李宏毅的视频里面讲了,选择模型需要对应的行业领域知识). 文中还提到了,训练数据的数量和模型参数数量的关系问题,一种观点认为训练数据集的数据量不应该小于模…
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.com/ty4z2008/Qix/blob/master/dl.md)共500条,[篇目二](https://github.com/ty4z2008/Qix/blob/master/dl2.md)开始更新------#####希望转载的朋友**一定要保留原文链接**,因为这个项目还在继续也在不定期更新.希望看到…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine Learning>一书中的开头有讲到:“概率论.决策论.信息论3个重要工具贯穿着<PRML>整本书,虽然看起来令人生畏…”.确实如此,其实这3大理论在机器学习的每一种技法中,或多或少都会出现其身影(不局限在概率模型). <PRML>书中原话:”This chapter also…
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 229 的学习笔记. Machine Learning Algorithms Study Notes 系列文章介绍 2    Supervised Learning    3 2.1    Perceptron Learning Algorithm (PLA)    3 2.1.1    PLA --…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
机器学习系统设计(Building Machine Learning Systems with Python)- Willi Richert Luis Pedro Coelho 总述 本书是 2014 的,看完以后才发现有第二版的更新,2016.建议阅读最新版,有能力的建议阅读英文版,中文翻译有些地方比较别扭(但英文版的书确实是有些贵). 我读书的目的:泛读主要是想窥视他人思考的方式. 作者写书的目标:面向初学者,但有时间看看也不错.作者说"我希望它能激发你的好奇心,并足以让你保持渴望,不断探索…
介绍下EM算法和GMM模型,先简单介绍GMM的物理意义,然后给出最直接的迭代过程:然后再介绍EM. 1 高斯混合模型 高斯分布,是统计学中的模型,其输出值表示当前输入数据样本(一维标量,多维向量)的概率. 1.1 多元高斯分布 如高斯分布-笔记所述,多元高斯函数公式为: \[p({\bf x})=\frac{1}{(2\pi)^{\frac{d}{2}}|\Sigma|^\frac{1}{2}}exp\{-\frac{1}{2}({\bf x-\mu})^T{\Sigma}^{-1}({\bf…
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? Learning Machine Learning Learning About Computer Science Educational Resources Advice Artificial Intelligence How-to Question Learning New Things Lea…
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics for machine learning? Promoted by Time Doctor Software for productivity tracking. Time tracking and productivity improvement software with screenshots…
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcement learning Structured prediction Feature engineering Feature learning Online learning Semi-supervised learning Unsupervised learning Learning to rank…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
Machine Learning读书会,面试&算法讲座,算法公开课,创业活动,算法班集锦 近期活动: 2014年9月3日,第8次西安面试&算法讲座视频 + PPT 的下载地址:http://blog.csdn.net/v_july_v/article/details/7237351#t40: 2014年10月18日,北京10月机器学习班开班,全部PPT 的下载地址见:http://blog.csdn.net/v_july_v/article/details/7237351#t63: 201…
Recommended Books Here is a list of books which I have read and feel it is worth recommending to friends who are interested in computer science. Machine Learning Pattern Recognition and Machine Learning Christopher M. Bishop A new treatment of classi…
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightforward. In this module, we share best practices for applying machine learning in practice, and discuss the best ways to evaluate performance of the le…
In recent years, Kernel methods have received major attention, particularly due to the increased popularity of the Support Vector Machines. Kernel functions can be used in many applications as they provide a simple bridge from linearity to non-linear…