bzoj3505 / P3166 [CQOI2014]数三角形】的更多相关文章

P3166 [CQOI2014]数三角形 前置知识:某两个点$(x_{1},,y_{1}),(x_{2},y_{2})\quad (x_{1}<x_{2},y_{1}<y_{2})$所连成的线段穿过整点的个数为$gcd(x_{2}-x_{1},y_{2}-y_{1})-1$ “注意三角形的三点不能共线.” 暗示你可以处理出总方案再减去三点共线的方案. 显然,总方案就是在$(n+1)*(m+1)$个点中任选$3$个.于是$tot=C((n+1)*(m+1),3)$ 现在我们要算出三点共线的方案…
[BZOJ3505][Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. Input 输入一行,包含两个空格分隔的正整数m和n. Output 输出一个正整数,为所求三角形数量. Sample Input 2 2 Sample Output 76 数据范围 1<=m,n<=1000 题解:显然要用补集法,我们只需要求出三点共线的方案数即可.方法是先枚举两端的点所形成的向…
[bzoj3505][Cqoi2014]数三角形 2014年5月15日3,5230 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4×4的网格上的一个三角形. 注意三角形的三点不能共线. Input 输入一行,包含两个空格分隔的正整数m和n. Output 输出一个正整数,为所求三角形数量. Sample Input 2 2 Sample Output 76 数据范围1<=m,n<=1000 题解 就是全部去减,减去在一列的,在一行的,在斜对角的,…
「BZOJ3505」[CQOI2014] 数三角形 这道题直接求不好做,考虑容斥,首先选出3个点不考虑是否合法的方案数为$C_{(n+1)*(m+1)}^{3}$,然后减去三点一线的个数就好了.显然不能枚举端点,我们可以考虑枚举两个点的x,y差值i,j,那么中间整点的个数为(gcd(i,j)-1),这样的正方形有多个,所以(n-i+1)*(m-j+1)*(gcd(i,j)-1)*2,乘2是因为有两条对角线,但是当i=0或j=0是就不能乘2了. #include<iostream> #inclu…
题目 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. 输入格式 输入一行,包含两个空格分隔的正整数m和n. 输出格式 输出一个正整数,为所求三角形数量. 输入样例 2 2 输出样例 76 数据范围 1<=m,n<=1000 题解 比较容易想到的是用所有方案\(C_{n*m}^{3}\)减去共线的方案 水平和竖直共线很容易算,为\(n * C_{m}^{3}\)和\(m * C_{n}^{3}\) 主要是倾斜的线 我们…
http://www.lydsy.com/JudgeOnline/problem.php?id=3505 (题目链接) 题意 给定一个n*m的网格,请计算三点都在格点上的三角形共有多少个. Solution $${ans=平面中选三个点的方案数-三点共线的方案数}$$ $${ans=C_{(n+1)*(m+1)}^{3}-(n+1)*C_{m+1}^{3}-(m+1)*C_{n+1}^{3}-斜的三点共线的方案数}$$ 斜的三点共线方案数不会求..左转题解:http://blog.csdn.ne…
题目描述 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. 输入 输入一行,包含两个空格分隔的正整数m和n. 输出 输出一个正整数,为所求三角形数量. 样例输入 2 2 样例输出 76 题解 容斥原理 三角形数目=选出三个点的方案数-三点共线的方案数. 选出三个点的方案数显然为$C_{(n+1)(m+1)}^3$. 三线共线的方案数,考虑枚举两端点,统计出一个矩形内的方案数,再算出总体方案数.其中点坐标的gcd-1为中间…
洛谷P3166:https://www.luogu.org/problemnew/show/P3166 思路 用组合数求出所有的3个点组合(包含不合法的) 把横竖的3个点共线的去掉 把斜的3个点共线的去掉(枚举所有的矩阵把每个矩阵的对角线去掉) 每一条对角线可以取得首尾两点有(n-i)*(m-j)*2种方式可以选择 每一条对角线除了首尾两个点之外可以取到中间点有gcd(i,j)-1个 因此有对于每个条对角线有gcd(i,j)-1种要去掉(相似三角形) 代码 #include<iostream>…
传送门 直接求还要考虑各种不合法情况,不好计数 很容易想到容斥 把所有可能减去不合法的情况剩下的就是合法情况 那么我们只要任取不同的三点就是所有可能,不合法情况就是三点共线 对于两点 $(x_1,y_1)\ ,\ (x_2,y_2)$ ,它们之间有 $gcd(\left | x_1-x_2 \right |,\left | y_1-y_2 \right |)-1$ 个交点 证明?因为第三点C如果在两点A,B间的线上 那么$\frac{\left | x_A-x_C \right |}{ \lef…
题目描述 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形.注意三角形的三点不能共线. 输入输出格式 输入格式: 输入一行,包含两个空格分隔的正整数m和n. 输出格式: 输出一个正整数,为所求三角形数量. 输入输出样例 输入样例#1: 2 2 输出样例#1: 76 数据范围 1 —————————————————————————————————————————————————————————————————————————————————— 这道题呢…