在 paper: Bounded Biharmonic Weights for Real-Time Deformation 中第一次接触到 Euler-Lagrange 方程,简单记录一下. 泛函的定义 定义一: 泛函(functional)通常是指定义域为函数集,而值域为实数或者复数的映射.换而言之,泛函是从由函数组成的一个向量空间到标量域的映射. 定义二: 设 \(\boldsymbol{C}\) 是函数(形式)的集合,\(\boldsymbol{B}\) 是实数集合:如果对 \(\bold…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1286 欧拉函数:对正整数n,欧拉函数是求少于n的数中与n互质的数的数目: 素数(质数)指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数. φ函数的值 通式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数.   φ(1)=1(唯一和1互质的数(小于等于1)就是1本身)…
Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18507   Accepted: 7429 Description The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b)…
欧拉函数&欧拉定理&降幂 总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300214 这年头不总结一下是真的容易忘,老了老了,要AFO了... 欧拉函数 介绍 欧拉函数写做\(\varphi[x]\),表示\(0\)到\(x\)中与\(x\)互质的数的个数 那么我们会有引理(对于素数\(p\)): \[\left\{ \begin{aligned} \varphi[p]=p-1\ --------------①\\ \varph…
题目求φ(a)+φ(a+1)+...+φ(b-1)+φ(b). 用欧拉筛选法O(n)计算出n以内的φ值,存个前缀和即可. φ(p)=p-1(p是质数),小于这个质数且与其互质的个数就是p-1: φ(p*a)=(p-1)*φ(a)(p是质数且p不能整除a),因为欧拉函数是积性函数,φ(p*a)=φ(p)*φ(a): φ(p*a)=p*φ(a)(p是质数且p|a),不知怎么理解.. #include<cstdio> #include<cstring> using namespace s…
题目链接:hdu 2824 The Euler function 题意: 让你求一段区间的欧拉函数值. 题解: 直接上板子. 推导过程: 定义:对于正整数n,φ(n)是小于或等于n的正整数中,与n互质的数的数目. 例如:φ(8)=4,因为1,3,5,7均和8互质. 性质:1.若p是质数,φ(p)= p-1. 2.若n是质数p的k次幂,φ(n)=(p-1)*p^(k-1).因为除了p的倍数都与n互质 3.欧拉函数是积性函数,若m,n互质,φ(mn)= φ(m)φ(n). 根据这3条性质我们就可以推…
/* 题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体证明看po主的博客 ^0^ #超时:这里直接用欧拉函数暴力搞还是不可以的,用到线性筛欧拉函数,这里总和爆int,要用long long */ #include<bits/stdc++.h> #define ll long long using namespace std; /***********…
欧拉函数: φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk),其中p1.p2-pk为n的所有素因子.比如:φ(12)=12*(1-1/2)(1-1/3)=4.可以用类似求素数的筛法.(素数打表)先筛出n以内的所有素数,再以素数筛每个数的φ值.比如求10以内所有数的φ值:设一数组phi[11],赋初值phi[1]=1,phi[2]=2...phi[10]=10:然后从2开始循环,把2的倍数的φ值*(1-1/2),则phi[2]=2*1/2=1,phi[4]=4*1/2=2,p…
素数(Prime)及判定 定义 素数又称质数,一个大于1的自然数,除了1和它自身外,不能整除其他自然数的数叫做质数,否则称为合数. 1既不是素数也不是合数. 判定 如何判定一个数是否是素数呢?显然,我们可以枚举这个数的因数,如果存在除了它本身和1以外的因数,那么这个数就是素数. 在枚举时,有一个很简单的优化:一个合数\(n\)必有一个小于等于\(\sqrt{n}\)的因数. 证明如下: 假设一个合数\(n\)没有小于等于\(\sqrt{n}\)的因数. 由于\(n\)为合数,所以除了\(n\)与…
The Euler function Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description The Euler function phi is an important kind of function in number theory, (n) represents the amount of the numbers which are sm…