# coding: utf-8 # 利用 diabetes数据集来学习线性回归 # diabetes 是一个关于糖尿病的数据集, 该数据集包括442个病人的生理数据及一年以后的病情发展情况. # 数据集中的特征值总共10项, 如下: # 年龄 # 性别 #体质指数 #血压 #s1,s2,s3,s4,s4,s6  (六种血清的化验数据) #但请注意,以上的数据是经过特殊处理, 10个数据中的每个都做了均值中心化处理,然后又用标准差乘以个体数量调整了数值范围.验证就会发现任何一列的所有数值平方和为1…
灰色预测的主要特点是只需要4个数据,就能解决历史数据少,序列的完整性以及可靠性低的问题,能将无规律的原始数据进行生成得到规律性较强的生成序列,易于检验 但缺点是只适合中短期的预测,且只适合指数级增长的预测. 在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据预处理后的数据序列称为生成列.对原始数据进行预处理,不是寻找它的统计规律和概率分布,而是将杂乱无章的原始数据列通过一定的方法处理,变成有规律的时间序列数据,即以数找数的规律,再建立动态模型. 灰色预测通过鉴别系统因素之间发展趋势…
一.过拟合 建模的目的是让模型学习到数据的一般性规律,但有时候可能会学过头,学到一些噪声数据的特性,虽然模型可以在训练集上取得好的表现,但在测试集上结果往往会变差,这时称模型陷入了过拟合,接下来造一些伪数据进行演示: import os os.chdir('../') from ml_models.linear_model import * import numpy as np import matplotlib.pyplot as plt %matplotlib inline #造伪样本 X=…
Python数据挖掘之决策树DTC数据分析及鸢尾数据集分析 今天主要讲述的内容是关于决策树的知识,主要包括以下内容:1.分类及决策树算法介绍2.鸢尾花卉数据集介绍3.决策树实现鸢尾数据集分析.希望这篇文章对你有所帮助,尤其是刚刚接触数据挖掘以及大数据的同学,同时准备尝试以案例为主的方式进行讲解.如果文章中存在不足或错误的地方,还请海涵~ 一. 分类及决策树介绍 1.分类         分类其实是从特定的数据中挖掘模式,作出判断的过程.比如Gmail邮箱里有垃圾邮件分类器,一开始的时候可能什么都…
人工智能大数据,公开的海量数据集下载,ImageNet数据集下载,数据挖掘机器学习数据集下载 ImageNet挑战赛中超越人类的计算机视觉系统微软亚洲研究院视觉计算组基于深度卷积神经网络(CNN)的计算机视觉系统,在ImageNet 1000挑战中首次超越了人类进行对象识别分类的能力.他们的系统在ImageNet 2012分类数据集中的错误率已降低至4.94%.这个数据集包含约120万张训练图像.5万张验证图像和10万张测试图像,分为1000个不同的类别.该研究团队由微软亚洲研究院研究员孙剑.何…
PASCAL VOC数据集分析 PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge. 本文主要分析PASCAL VOC数据集中和图像中物体识别相关的内容.   在这里采用PASCAL VOC2012作为例子.下载地址为:点击打开链接.(本文中的系统环境为ubuntu14.04) 下载完之后解压,可以在VOCdevkit目录下的VOC2012中看到如下的文件: 其中在图像物体识别上着重需要了解的是Annotati…
[数据挖掘]关联分析之Apriori 1.Apriori算法 如果一个事务中有X,则该事务中则很有可能有Y,写成关联规则 {X}→{Y} 将这种找出项目之间联系的方法叫做关联分析.关联分析中最有名的问题是购物蓝问题,在超市购物时,有一个奇特的现象——顾客在买完尿布之后通常会买啤酒,即{尿布}→{啤酒}.原来,妻子嘱咐丈夫回家的时候记得给孩子买尿布,丈夫买完尿布后通常会买自己喜欢的啤酒. 考虑到规则的合理性,引入了两个度量:支持度(support).置信度(confidence),定义如下 支持度…
PASCAL VOC数据集分析 PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge. 本文主要分析PASCAL VOC数据集中和图像中物体识别相关的内容. 在这里采用PASCAL VOC2012作为例子.下载地址为:点击打开链接.(本文中的系统环境为ubuntu14.04) 下载完之后解压,可以在VOCdevkit目录下的VOC2012中看到如下的文件: 其中在图像物体识别上着重需要了解的是Annotation…
1.R语言重要数据集分析研究需要整理分析阐明理念? 上一节讲了R语言作图,本节来讲讲当你拿到一个数据集的时候如何下手分析,数据分析的第一步,探索性数据分析. 统计量,即统计学里面关注的数据集的几个指标,常用的如下:最小值,最大值,四分位数,均值,中位数,众数,方差,标准差,极差,偏度,峰度 先来解释一下各个量得含义,浅显就不说了,这里主要说一下不常见的 众数:出现次数最多的 方差:每个样本值与均值的差得平方和的平均数 标准差:又称均方差,是方差的二次方根,用来衡量一个数据集的集中性 极差:最大值…
0. 参考 js分析 猫_眼_电_影 字体文件 @font-face 1. 分析 1.1 定位目标元素 1.2 查看网页源代码 1.3 requests 请求提取得到大量错误信息 对比猫_眼_电_影抓取到unicode编码,天_眼_查混合使用正常字体和自定义字体,难点在于如何从 '红' 转化为 '美'. 一开始认为一定有js进行了转化,最后发现直接通过 FontCreator 搜索 '红' 返回结果为 '美' ... 1.4 查看目标元素 CSS Computed 信息,使用了网络请求字体 1.…