首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
支持向量机(SVM)入门
】的更多相关文章
支持向量机(SVM)入门
一.简介 支持向量机,一种监督学习方法,因其英文名为support vector machine,故一般简称SVM. 通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解. 支持向量机建构一个或多个高维(甚至是无限多维)的超平面来分类数据点,这个超平面即为分类边界. 直观来说,好的分类边界要距离最近的训练数据点越远越好,因为这样可以减低分类器的泛化误差. 在支持向量机中,分类边界与最近的训练数据点之间的距…
大数据-10-Spark入门之支持向量机SVM分类器
简介 支持向量机SVM是一种二分类模型.它的基本模型是定义在特征空间上的间隔最大的线性分类器.支持向量机学习方法包含3种模型:线性可分支持向量机.线性支持向量机及非线性支持向量机.当训练数据线性可分时,通过硬间隔最大化,学习一个线性的分类器,即线性可分支持向量机:当训练数据近似线性可分时,通过软间隔最大化,也学习一个线性的分类器,即线性支持向量机:当训练数据线性不可分时,通过使用核技巧及软间隔最大化,学习非线性支持向量机.线性支持向量机支持L1和L2的正则化变型.关于正则化,可以参见http:/…
SVM入门(一)
近来,了解了一下SVM(支持向量机 support vector machine)的原理.顺便把自己理解的内容整理一下. 不讲背景啦,直接切入主题. 一.什么是支持向量机 好比说,我们现在在一个平面上有许多的圈圈和叉叉,如图1.1所示. 图1.1 现在需要一条直线将圈圈和叉叉分开,可以想象,会有很多条可能的直线,但是会有一条最佳的分割线L,如图1.2所示. 图1.2 绿色的叉叉到L的最短距离为d1,红色圈圈到L的最短距离为d2,保证d1=d2,并且使d1+d2的值最大,那么这条直线就…
模式识别之svm()---支持向量机svm 简介1995
转自:http://www.blogjava.net/zhenandaci/archive/2009/02/13/254519.html 作者:Jasper 出自:http://www.blogjava.net/zhenandaci/ (一)SVM的八股简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本.非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10].支持向量机方法是…
【IUML】支持向量机SVM
从1995年Vapnik等人提出一种机器学习的新方法支持向量机(SVM)之后,支持向量机成为继人工神经网络之后又一研究热点,国内外研究都很多.支持向量机方法是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力(Generalizatin Ability). SVM一种新的非常有发展前景的分类识别技术.SVM是建立在统计学习理论中…
机器学习:Python中如何使用支持向量机(SVM)算法
(简单介绍一下支持向量机,详细介绍尤其是算法过程可以查阅其他资) 在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类(异常值检测)以及回归分析. 其具有以下特征: (1)SVM可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值.而其他分类方法都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解. (2) SVM通过最大化决策边界的边缘来实现控制模型的能力.尽管如此,用户必须…
以图像分割为例浅谈支持向量机(SVM)
1. 什么是支持向量机? 在机器学习中,分类问题是一种非常常见也非常重要的问题.常见的分类方法有决策树.聚类方法.贝叶斯分类等等.举一个常见的分类的例子.如下图1所示,在平面直角坐标系中,有一些点,已知这些点可以分为两类,现在让你将它们分类. (图1) 显然我们可以发现所有的点一类位于左下角,一类位于右上角.所以我们可以很自然将它们分为两类,如图2所示:红色的点代表一类,蓝色的点代表一类. (图2) 现在如果让你用一条直线将这两类点分开,这应该是一件非常容易的事情,比如如图3所示的三条直线都…
机器学习算法 - 支持向量机SVM
在上两节中,我们讲解了机器学习的决策树和k-近邻算法,本节我们讲解另外一种分类算法:支持向量机SVM. SVM是迄今为止最好使用的分类器之一,它可以不加修改即可直接使用,从而得到低错误率的结果. [案例背景] 从前有两个地主,他们都是占山为王的一方霸主.本来各自吃饱自己的饭万事无忧,可是人心不知足蛇吞象啊,自己总是都想占对方的一亩三分地,冲突争吵从来都没有停歇过.当时的环境就是谁狠这土地就归谁,但是我们现在想从科学的角度来分析,如何让他们的地盘均分,画条边界线,从此互不干扰呢? [演示代码] i…
机器学习之支持向量机—SVM原理代码实现
支持向量机—SVM原理代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9596898.html 1. 解决什么问题? 最基本的应用是数据分类,特别是对于非线性不可分数据集.支持向量机不仅能对非线性可分数据集进行分类,对于非线性不可分数据集的也可以分类 (我认为这才是支持向量机的真正魅力所在,因为现实场景中,样本数据往往是线性不可分的). 现实场景一 :样本数据大部分是线性可分的,但是只是在样本中含有少量…
支持向量机SVM——专治线性不可分
SVM原理 线性可分与线性不可分 线性可分 线性不可分-------[无论用哪条直线都无法将女生情绪正确分类] SVM的核函数可以帮助我们: 假设‘开心’是轻飘飘的,“不开心”是沉重的 将三维视图还原成二维: 刚利用“开心”“不开心”的重量差实现将二维数据变成三维的过程,称为将数据投射至高维空间,这正是核函数的功能 在SVM中,用的最普遍的两种把数据投射到高维空间的方法分别是多项式内核.径向基内核(RFB) 多项式内核: 通过把样本原始特征进行乘方来把数据投射到高维空间[如特征1^2,特征2^3…