SVM系列之拉格朗日对偶】的更多相关文章

在学习SVM(Support Vector Machine) 支持向量机时,对于线性可分的分类样本求出的分类函数为: 其中,分类超平面可以表示为:…
在上一篇文章中,我们推导出了 SVM 的目标函数: \[ \underset{(\mathbf{w},b)}{\operatorname{min}} ||\mathbf{w}|| \\ \operatorname{s.t.} \ y_i(\mathbf{w}^T\mathbf{x_i}+b) \ge \delta, \ \ i=1,...,m \] 由于求解过程中,限制条件中的 \(\delta\) 对结果不产生影响,所以简单起见我们把 \(\delta\) 替换成 1.另外,为了之后求解的方便…
拉格朗日对偶(Lagrange duality) 存在等式约束的极值问题求法,比如下面的最优化问题:              目标函数是f(w),下面是等式约束.通常解法是引入拉格朗日算子,这里使用来表示算子,得到拉格朗日公式为              L是等式约束的个数. ,然后解出w和.至于为什么引入拉格朗日算子可以求出极值,原因是f(w)的dw变化方向受其他不等式的约束,dw的变化方向与f(w)的梯度垂直时才能获得极值,而且在极值处,f(w)的梯度与其他等式梯度的线性组合平行,因此他们…
解密SVM系列(二):SVM的理论基础     原文博主讲解地太好了  收藏下 解密SVM系列(三):SMO算法原理与实战求解 支持向量机通俗导论(理解SVM的三层境界) 上节我们探讨了关于拉格朗日乘子和KKT条件,这为后面SVM求解奠定基础,本节希望通俗的细说一下原理部分. 一个简单的二分类问题如下图:  我们希望找到一个决策面使得两类分开,这个决策面一般表示就是WTX+b=0,现在的问题是找到对应的W和b使得分割最好,知道logistic分类 机器学习之logistic回归与分类的可能知道,…
引言:尝试用最简单易懂的描述解释清楚机器学习中会用到的拉格朗日对偶性知识,非科班出身,如有数学专业博友,望多提意见! 1.原始问题 假设是定义在上的连续可微函数(为什么要求连续可微呢,后面再说,这里不用多想),考虑约束最优化问题: 称为约束最优化问题的原始问题. 现在如果不考虑约束条件,原始问题就是: 因为假设其连续可微,利用高中的知识,对求导数,然后令导数为0,就可解出最优解,很easy. 那么,问题来了(呵呵...),偏偏有约束条件,好烦啊,要是能想办法把约束条件去掉就好了,bingo! 拉…
引言:尝试用最简单易懂的描述解释清楚机器学习中会用到的拉格朗日对偶性知识,非科班出身,如有数学专业博友,望多提意见! 1.原始问题 假设是定义在上的连续可微函数(为什么要求连续可微呢,后面再说,这里不用多想),考虑约束最优化问题: 称为约束最优化问题的原始问题. 现在如果不考虑约束条件,原始问题就是: 因为假设其连续可微,利用高中的知识,对求导数,然后令导数为0,就可解出最优解,很easy. 那么,问题来了(呵呵...),偏偏有约束条件,好烦啊,要是能想办法把约束条件去掉就好了,bingo! 拉…
转载自https://www.cnblogs.com/90zeng/p/Lagrange_duality.html,本人觉得讲的非常好! 1.原始问题 假设是定义在上的连续可微函数(为什么要求连续可微呢,后面再说,这里不用多想),考虑约束最优化问题: 称为约束最优化问题的原始问题. 现在如果不考虑约束条件,原始问题就是: 因为假设其连续可微,利用高中的知识,对求导数,然后令导数为0,就可解出最优解,很easy. 那么,问题来了(呵呵...),偏偏有约束条件,好烦啊,要是能想办法把约束条件去掉就好…
上一篇说到SVM需要求出一个最小的||w|| 以得到最大的几何间隔. 求一个最小的||w|| 我们通常使用 来代替||w||,我们去求解 ||w||2 的最小值.然后在这里我们还忽略了一个条件,那就是约束条件,在上一篇的公式(8)中的不等式就是n维空间中数据点的约束条件.只有在满足这个条件下,求解||w||2的最小值才是有意义的.思考一下,若没有约束条件,那么||w||2的最小值就是0,反应在图中就是H1和H2的距离无限大那么所有点都会在二者之间,都属于同一类,而无法分开了. 求最小值的目标函数…
快毕业啦~~记得上一篇论文利用JointBoost+CRF做手绘草图的分割项目在3月份完结后,6月份去实习,9月份也没怎么认真找工作就立刻回来赶论文(由于分割项目与人合作难以写入毕业论文),从9月到1月一直狂写程序,其中过程就如去年10月开始做分割项目一样艰辛,不过现在工作也定了,论文也差不多了,可喜可贺~.这次的论文主要以手绘草图的分类为主,而分类方法我还是用的SVM支持向量机,用SVM做多分类,现在程序也基本完成了,所以想记录一下毕业论文中遇到个各种难题,我看了一些SVM,由于自己数学功底有…
上节我们探讨了关于拉格朗日乘子和KKT条件.这为后面SVM求解奠定基础,本节希望通俗的细说一下原理部分. 一个简单的二分类问题例如以下图: 我们希望找到一个决策面使得两类分开.这个决策面一般表示就是WTX+b=0,如今的问题是找到相应的W和b使得切割最好.知道logistic分类 机器学习之logistic回归与分类的可能知道,这里的问题和那里的一样.也是找权值.在那里,我们是依据每个样本的输出值与目标值得误差不断的调整权值W和b来求得终于的解的.当然这样的求解最优的方式仅仅是当中的一种方式.那…