nan:not a number inf:infinity;正无穷 numpy中的nan和inf都是float类型     t!=t 返回bool类型的数组(矩阵) np.count_nonzero() 返回的是数组中的非0元素个数:true的个数. np.isnan() 返回bool类型的数组. 那么问题来了,在一组数据中单纯的把nan替换为0,合适么?会带来什么样的影响? 比如,全部替换为0后,替换之前的平均值如果大于0,替换之后的均值肯定会变小,所以更一般的方式是把缺失的数值替换为均值(中…
Stackoverflow.com是程序员的好去处,本公众号将以pandas为主题,开始一个系列,争取做到每周一篇,翻译并帮助pandas学习者一起理解一些有代表性的案例.今天的主题就是Pandas与Numpy中一个非常重要的参数:axis.(轴) Stackoverflow问题如下: python中的axis究竟是如何定义的呢?他们究竟代表是DataFrame的行还是列?考虑以下代码: >>>df = pd.DataFrame([[1, 1, 1, 1], [2, 2, 2, 2],…
Numpy中matrix必须是2维的,但是 numpy中array可以是多维的(1D,2D,3D····ND).matrix是array的一个小的分支,包含于array.所以matrix 拥有array的所有特性. matrix() 和 array() 的区别,主要从以下方面说起: 矩阵生成方式不同 import numpy as np a1 = np.array([[1, 2], [3, 4]]) b1 = np.mat([[1, 2], [3, 4]]) a2 = np.array(([1,…
主要用到的知识就是thyme leaf中的条件运算符 表达式:(condition)?:then:else 当条件condition成立时返回then.否则返回else 具体代码:<td th:text="${buylog.getIs_pay()==0} ? '未付款':'已付款'"></td> 实际运用中的例子(我觉得我这个例子好详细了.这要是在搞不懂.阿西吧) 1.首先看数据库中的字段 我这里使用整形 0 1 模拟订单的付款.发货.收货.品论的状态. 2.这…
转载:https://blog.csdn.net/amuchena/article/details/89060798和https://www.runoob.com/python/python-func-sum.html numpy中的sum()函数和python中不太一样:…
Numpy 精通面向数组编程和思维方式是成为Python科学计算大牛的一大关键步骤.——<利用Python进行数据分析> Numpy(Numerical Python)是Python科学计算的基础包.具有以下功能: 快速高效的多维数组对象ndarray ndarray表示的是N维数组对象. ndarray是一个通用的同构数据多维容器,也就是说,其中的元素必须都是相同类型的.每个数组里面都有一个shape和一个dtype shape表示各个维度大小的元组dtype表示数组数据类型 除非是显示的设…
 在python&numpy中切片(slice) 上文说到了,词频的统计在数据挖掘中使用的频率很高,而切片的操作同样是如此.在从文本文件或数据库中读取数据后,需要对数据进行预处理的操作.此时就需要对数据进行变换,切片,来生成自己需要的数据形式. 对于一维数组来说,python原生的list和numpy的array的切片操作都是相同的.无非是记住一个规则arr_name[start: end: step],就可以了. 实例: 下面是几个特殊的例子: [:]表示复制源列表 负的index表示,从后往…
关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类型转化成矩阵(matrix) 1,mat()函数和array()函数的区别 Numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素,虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中Numpy函数库中的mat…
Python split() 通过指定分隔符对字符串进行切片,如果参数 num 有指定值,则分隔 num+1 个子字符串 str1.split() 里面的参数,可以是空格,逗号,字符串啥的,具体应用与我们的正则表达式 而numpy中的split 用于数组的分裂…
import numpy a=numpy.random.randint(1, 4095, (5000,5000)) a.sum() 结果为负值, 这是错误的,a.sum()的类型为 int32,如何做才能是结果显示正确呢?按照如下做法: c=numpy.int64(a).sum() 结果为正直,正确,c的类型为int64. 原因为下面,结果的类型跟元素的类型一样. 如果 d=numpy.int64(a.sum()) ,是不管用的,结果还是负值. 其他人不会出现这种状况,有的会出现,原因还是不太清…