caffe Dtype】的更多相关文章

http://blog.luoyetx.com/2015/10/reading-caffe-2/…
转自:http://blog.csdn.net/qq_14975217/article/details/51524042 Blob:4个维度 n x c x h x w: bottom[0] .bottom[1]代表该层有几个输入. bottom[0]->count(): 输入中,元素的总维数(个数) bottom[0]->nums(): 输入中,块(block)的个数,该参数还对应batch_size,即同时输入了几张图片 c:是卷积核(filter)的个数,每个卷积核产生一个通道的输出:在…
Blob:4个维度 n x c x h x w: bottom[0] .bottom[1]代表该层有几个输入. bottom[0]->count(): 输入中,元素的总维数(个数) bottom[0]->nums(): 输入中,块(block)的个数,该参数还对应batch_size,即同时输入了几张图片 c:是卷积核(filter)的个数,每个卷积核产生一个通道的输出:在输入层,c直接就是图像的通道数: 还有一个变量,dim;:每个块的维度(元素个数) 形象化: | xxxxx | xxxx…
小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文:  http://www.miaoerduo.com/deep-learning/基于caffe的large-margin-softmax-loss的实现(中).html 四.前馈 还记得上一篇博客,小喵给出的三个公式吗?不记得也没关系. 这次,我们要一点一点的通过代码来实现这些公式.小喵主要是GPU上实现前后馈的代码,因为这个层只…
小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L-Softmax,据说单model在LFW上能达到98.71%的等错误率.更重要的是,小喵觉得这个方法和DeepID2并不冲突,如果二者可以互补,或许单model达到99%+将不是梦想. 再次推销一下~ 小喵的博客网址是: http://www.miaoerduo.com 博客原文:  http://…
小喵的唠叨话:这次的博客,真心累伤了小喵的心.但考虑到知识需要巩固和分享,小喵决定这次把剩下的内容都写完. 小喵的博客:http://www.miaoerduo.com 博客原文: http://www.miaoerduo.com/deep-learning/基于caffe的deepid2实现(下).html ‎ 四.数据的重整,简单的划分 前面的Data层用于生成成对的输入数据,Normalization层,用于将feature归一化,那么之后是不是就可以使用ContrastiveLoss层进…
小喵的唠叨话:我们在上一篇博客里面,介绍了Caffe的Data层的编写.有了Data层,下一步则是如何去使用生成好的训练数据.也就是这一篇的内容. 小喵的博客:http://www.miaoerduo.com 博客原文:http://www.miaoerduo.com/deep-learning/基于caffe的deepid2实现(中).html 二.精髓,DeepID2 Loss层 DeepID2这篇论文关于verification signal的部分,给出了一个用于监督verificatio…
小喵的唠叨话:小喵最近在做人脸识别的工作,打算将汤晓鸥前辈的DeepID,DeepID2等算法进行实验和复现.DeepID的方法最简单,而DeepID2的实现却略微复杂,并且互联网上也没有比较好的资源.因此小喵在试验之后,确定了实验结果的正确性之后,才准备写这篇博客,分享给热爱Deep Learning的小伙伴们. 小喵的博客:http://www.miaoerduo.com 博客原文:http://www.miaoerduo.com/deep-learning/基于caffe的deepid2实…
转载请注明出处,楼燚(yì)航的blog,http://home.cnblogs.com/louyihang-loves-baiyan/ 因为利用Pyhon来做数据的预处理比较方便,因此在data_layer选择上,采用了MemoryDataLayer,可以比较方便的直接用Python 根据set_input_array进行feed数据,然后再调用solver进行step就可以了.说一下我碰到的问题,当时检查了一下感觉没有哪里出错,但是报 Segmentation Fault(Core Abor…
消费者 回忆:生产者提供产品的接口 在第捌章,IO系统(二)中,生产者DataReader提供了外部消费接口: class DataReader { public: ......... BlockingQueue<Datum*>& free() const { return ptr_pair->free; } BlockingQueue<Datum*>& full() const { return ptr_pair->full; } .........…