传送门 这该死的码农题…… 把每一条边变为它连接的两个点中深度较浅的那一个,然后就是一堆单点修改/路径查询,不讲了 这里就讲一下怎么搞路径取反,只要打一个标记就好了,然后把区间和取反,最大最小值交换然后再取反 单点修改的时候忘记pushdown结果调了好久…… //minamoto #include<bits/stdc++.h> #define inf 0x3f3f3f3f using namespace std; template<:;} template<:;} inline…
动态DP其实挺简单一个东西. 把DP值的定义改成去掉重儿子之后的DP值. 重链上的答案就用线段树/lct维护,维护子段/矩阵都可以.其实本质上差不多... 修改的时候在log个线段树上修改.轻儿子所在重链的线段树的根拿去更新父亲的DP值. #include <cstdio> #include <algorithm> , INF = 0x3f3f3f3f; template <class T> inline void read(T &x) { x = ; char…
洛谷题面传送门 一道 dp 套 dp 的 immortal tea 首先考虑如何判断一套牌是否已经胡牌了,考虑 \(dp\)​​​​​.我们考虑将所有牌按权值大小从大到小排成一列,那我们设 \(dp_{i,j,k,0/1}\)​​​​ 表示目前考虑了权值 \(\le i\)​​​​ 的牌,我们之前预留了 \(j\)​​​ 张形如 \((i-1,i)\)​​​ 的牌与 \(i+1\)​​​ 形成刻子,又留了 \(k\)​​​ 张 \(i\)​​​ 与 \(i+1,i+2\)​​​ 形成刻子,\(0…
洛谷 P3373 [模板]线段树 2 洛谷传送门 题目描述 如题,已知一个数列,你需要进行下面三种操作: 将某区间每一个数乘上 xx 将某区间每一个数加上 xx 求出某区间每一个数的和 输入格式 第一行包含三个整数 n,m,pn,m,p,分别表示该数列数字的个数.操作的总个数和模数. 第二行包含 nn 个用空格分隔的整数,其中第 ii 个数字表示数列第 ii 项的初始值. 接下来 mm 行每行包含若干个整数,表示一个操作,具体如下: 操作 11: 格式:1 x y k 含义:将区间 [x,y][…
题目:https://www.luogu.org/problemnew/show/P4719 感觉这篇博客写得挺好:https://blog.csdn.net/litble/article/details/81038415 为了动态维护DP值,首先要把它转化成一个容易维护的形式,这道题中DP状态的转移就可以转化成矩阵乘法: 于是要快速算出一个DP值,就可以矩阵连乘,用线段树维护(此时求DP值已经完全变成求区间矩阵乘积了): 可以发现,如果修改一个点的值,影响到的只有它到根的一条链: 所以树剖+线…
[模板]"动态 DP"&动态树分治 第一道动态\(DP\)的题,只会用树剖来做,全局平衡二叉树什么的就以后再学吧 所谓动态\(DP\),就是在原本的\(DP\)求解的问题上加上修改操作,从而使得问题变成动态的问题 这道题的问题就是普通的树形\(DP\)上加上了修改点权的操作 题意: 给定一棵 \(n\) 个点的树.\(i\) 号点的点权为 \(a_i\).有 \(m\) 次操作,每次操作给定 \(u\),\(w\),表示修改点 \(u\) 的权值为 \(w\).你需要在每次操作…
题目大意:给你一颗$n$个点的树,点有点权,有$m$次操作,每次操作给定$x$,$y$,表示修改点$x$的权值为$y$. 你需要在每次操作之后求出这棵树的最大权独立集的权值大小. 数据范围:$n,m≤1e5$ 我们显然可以得出一个$O(nm)$的暴力做法,每次修改完后$dp$一次,然而这个显然会超时. 考虑当树退化成链时的简单做法. 我们用线段树维护每个区间的答案.对于区间$[l,r]$,我们维护一个$2×2$的答案矩阵$ans$. 设$ans[0][0]$表示区间左端点可能被选择,右端点一定不…
题面 Bzoj 洛谷 题解 (除了代码均摘自喻队的博客,可是他退役了) 首先固定一棵树,枚举另一棵树,显然另一棵树只有与这棵树同构才有可能产生贡献 如果固定的树以重心为根,那么另一棵树最多就只有重心为根才有可能同构了(可能有两个) 然后就是求改动次数最小值,设$f[x][y]$表示以第一棵树$x$为根的子树内和第二棵树内$y$为根的子树内,达到目标最少需要改动的次数 我们发现只有同构的子树需要决策,我们把同构的子树分别拿出来,我们要做的就是做一个匹配,跑一遍$KM$或者费用流就好了.因为要最小化…
题面 洛谷 题解 虚树+dp 关于虚树 了解一下 具体实现 inline void insert(int x) { if (top == 1) {s[++top] = x; return ;} int lca = query(x, s[top]); while (top > 1 && dfn[s[top-1]] >= dfn[lca]) t[s[top-1]].push_back(s[top]), top--; if (lca != s[top]) t[lca].push_ba…
题目:bzoj3295 https://www.lydsy.com/JudgeOnline/problem.php?id=3295 洛谷 P3157(同一道题) https://www.luogu.org/problemnew/show/P3157 洛谷 P1393(略有不同) https://www.luogu.org/problemnew/show/P1393 动态逆序对问题: 树状数组套权值线段树,动态开点: 就像树状数组那样做就可以了,每个线段树维护一段区间内的不同权值的数的个数: 删除…