LU分解(1)】的更多相关文章

线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积.常见的有如下分解: LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵 QR分解: 秩分解:A=CD  ,  A是m×n矩阵,C是m×4矩阵,D是4×n矩阵. 奇异值分解:A=UDVT 谱分解: 在求解线性方程组中,一个核心的问题就是矩阵的LU分解,我们将一个矩阵A分解为两个更加简单的矩阵的复合LU,其中L是下三角矩阵,U是阶梯形矩阵.下三角矩阵和上三角矩阵具有非常良好的性质:Lx=y…
///A 为矩阵,这里写成一维数组,如 [1],[1,2,3,4] function GetLU(a) { var n = a.length;//矩阵的总数据数目 var s = Math.sqrt(n);//矩阵的阶数 var L = new Array(n); var U = new Array(n); if (GetDet(a) != 0) { var allOrderNotEqulesZero = true; for (var i = 0; i < s; i++) { if (GetDe…
朴素高斯消去法: function x = GauElim(n, A, b) if nargin < 2 for i = 1 : 1 : n for j = 1 : 1 : n A(i, j) = 1 / (i + j - 1); end b(i, 1) = 1; end end for j = 1 : n - 1 if abs(A(j, j)) < eps; error('zero pivot encountered'); end for i = j + 1 : n mult = A(i,…
接着上次LU分解的讲解,这次给出使用不同的计算LU分解的方法,这种方法称为基于GaxPy的计算方法.这里需要了解lapapck中的一些函数.lapack中有一个函数名为gaxpy,所对应的矩阵计算公式是:x = Gx + y; 对应的Matlab代码如下: function[L, U] =zgaxpylu(A) %calculate LU decomposition based on Gaxpy operation %the same way as zlu.m but differnt appr…
1/6 LU 分解          LU 分解可以写成A = LU,这里的L代表下三角矩阵,U代表上三角矩阵.对应的matlab代码如下: function[L, U] =zlu(A) % ZLU - LU decomposition for matrix A % work as gauss elimination   [m, n] = size(A); if m ~= n      error('Error, current time only support square matrix')…
作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 三.实验程序 五.解答(按如下顺序提交电子版) 1.(程序) (1)LU分解源程序: function [l,u]=lu12(a,n) for k=1:n-1 for i=k+1:n a(i,k)=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-a(i,k)*a(k,j); end end end l=eye(n); u=zeros(n,n); for k=1:n fo…
在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积).LU分解主要应用在数值分析中,用来解线性方程.求反矩阵或计算行列式. 什么是LU分解 如果有一个矩阵A,将A表示成下三角矩阵L和上三角矩阵U的乘积,称为A的LU分解. 更进一步,我们希望下三角矩阵的对角元素都为1: 一旦完成了LU分解,解线性方程组就会容易得多. LU分解的步骤 上一章讲到,对于满秩矩阵A来说,通过左乘一个消…
相关概念: 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等.两个向量正交的意思是两个向量的内积为 0 正定矩阵:如果对于所有的非零实系数向量x ,都有 x'Ax>0,则称矩阵A 是正定的.正定矩阵的行列式必然大于 0, 所有特征值也必然 > 0.相对应的,半正定矩阵的行列式必然 ≥ 0.   QR分解 矩阵的正交分解又称为QR分解,是将矩阵分解为一个正交矩阵Q和一个上三角矩阵的乘积的形式. 任意实数方阵A,都能被分解为A=QR.这里的Q为正交单位阵…
#include <iostream> #include <cstdio> #include <algorithm> #include <cstdlib> using namespace std; #define N 20 double A[N][N],L[N][N],U[N][N],b[N],Y[N],X[N]; /// --------------------------------------------------------------------…
本文主要描述实现LU分解算法过程中遇到的问题及解决方案,并给出了全部源代码. 1. 什么是LU分解? 矩阵的LU分解源于线性方程组的高斯消元过程.对于一个含有N个变量的N个线性方程组,总可以用高斯消去法,把左边的系数矩阵分解为一个单位下三角矩阵和一个上三角矩阵相乘的形式.这样,求解这个线性方程组就转化为求解两个三角矩阵的方程组.具体的算法细节这里不做过多的描述,有很多的教材和资源可以参考.这里推荐的参考读物如下: Numerical recipes C++,还有包括MIT的线性代数公开课. 2.…
一.A的LU分解:A=LU 我们之前探讨过矩阵消元,当时我们通过EA=U将A消元得到了U,这一节,我们从另一个角度分析A与U的关系 假设A是非奇异矩阵且消元过程中没有行交换,我们便可以将矩阵消元的EA=U形式改写成A=LU形式,其中E与L互为逆矩阵,且L是下三角矩阵 这么写有什么好处? 当我们使用EA=U时,E是由E1E2...En相乘得到的,我们发现E的每一行中都包含有前面操作的副操作,举个例子,将2个第一行加到第二行得到新的第二行,再将2个第二行加到第三行得到新的第三行,此时第三行中包含有4…
n=4;%确定需要LU分解的矩阵维数 %A=zeros(n,n); L=eye(n,n);P=eye(n,n);U=zeros(n,n);%初始化矩阵 tempU=zeros(1,n);tempP=zeros(1,n);%初始化中间变量矩阵 A=[1 2 -3 4;4 8 12 -8;2 3 2 1;-3 -1 1 -4];%需要LU分解矩阵赋值 for p=1:n %将A矩阵赋值给U for q=1:n U(p,q)=A(p,q); end end jt=1;kt=0; for i=1:n-1…
一:矩阵LU分解 矩阵的LU分解目的是将一个非奇异矩阵\(A\)分解成\(A=LU\)的形式,其中\(L\)是一个主对角线为\(1\)的下三角矩阵:\(U\)是一个上三角矩阵. 比如\(A= \begin{bmatrix} 1 & 2 & 4 \\ 3 & 7 & 2 \\ 2 & 3 & 3 \\ \end{bmatrix}\),我们最终要分解成如下形式: \[A=L\cdot U = \begin{bmatrix} 1 & 0 & 0 \…
有如下方程组 ,当矩阵 A 各列向量互不相关时, 方程组有位移解,可以使用消元法求解,具体如下: 使用消元矩阵将 A 变成上三角矩阵 , , 使用消元矩阵作用于向量 b,得到向量 c,, , Ax=b 消元后变为 ,即 , 由于  为上三角矩阵, 使用回带法即可求解方程组. 对矩阵  做如下运算 .在消元过程中,已知 ,如何求解  呢? 表示将矩阵A的第二行乘以 1 再加上矩阵A的第三行得到矩阵B的第三行,矩阵B的第一二行于矩阵A的第一二行保持一致.根据语义, 表示将矩阵B的第二行乘以 -1 再…
1. A = LU 之前在消元的过程中,我们看到可以将矩阵 \(A\) 变成一个上三角矩阵 \(U\),\(U\) 的对角线上就是主元.下面我们将这个过程反过来,通一个下三角矩阵 \(L\) 我们可以从 \(U\) 得到 \(A\), \(L\) 中的元素也就是乘数 \(l_{ij}\). 如果有一个 3*3 的矩阵,假设不需要进行行交换,那我们需要三个消元矩阵 \(E_{21}, E_{31}, E_{32}\) 来分别使矩阵 \(A\) 的 (2, 1).(3, 1) 和 (3, 2) 位置…
# coding:utf8 import numpy as np def lu(mat): r,c=np.shape(mat) s=min(r,c) for k in range(s): x=1.0/mat[k][k] # 将后续除法变成乘法 for i in range(k+1,r): mat[i][k]=mat[i][k]*x # L[1:][0]*U[0][0]=A[1:][0]:A[0][:]=mat[0][:] for i in range(k+1,r): for j in range…
一.矩阵$AB$的逆 $(AB)^{-1}=B^{-1}A^{-1}$,顺序正好相反 二.$A=LU$ 如矩阵: $\left[\begin{array}{ll}{2} & {1} \\ {8} & {7}\end{array}\right]$ =>消元=>$\left[\begin{array}{ll}{2} & {1} \\ {0} & {3}\end{array}\right]$ 按照我们在第二讲所知,原始矩阵借助$E_{21}$可以实现矩阵的消元,即$E…
#encoding=utf-8 import numpy as np # 输入数据 # a用来记录x的系数 a=[[2.0,2.0,3.0],[4.0,7.0,7.0],[-2.0,4.0,5.0]] # b用来记录 y b=[3.0,1.0,-7.0] # n用来记录方程的个数 n=len(b) # 定义x x=[0.0 for i in range(n)] l=[[0.0 for i in range(n)] for j in range(n)] u=[[0.0 for i in range…
本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);grid on;%由图像可知 根在1.05到1.15之间 syms x s0=diff(x^3-x^2+sin(x)-1,x,1); % 得到s0= cos(x) - 2*x + 3*x^2 % 迭代方程为 y=x-(x.^3-x.^2+sin(x)-1)/(cos(x) - 2.*x + 3*x.^2…
高斯消元法求解线性方程,包括把增广矩阵转换为三角矩阵形式的过程,消去阶段工作 步骤是把矩阵A分解成为下三角L和上三角U的乘积.这种计算L,U的过程称为LU分解法. lu实现对矩阵的分解. [L,U] = lu(A) %%将矩阵A分解的上三角矩阵保存在U当中,将一个“心理学上的”下三角矩阵(例如一个下三角矩阵和置换矩阵的乘积)保存在L中,满足A=L*U,注意A不必须是方阵. [L,U,P] = lu(A) %%返回三个矩阵,下三角矩阵L.上三角矩阵U和一个置换矩阵P,满足P*A=L*U. [L,U…
    接着LU分解继续往下,就会发展出很多相关但是并不完全一样的矩阵分解,最后对于对称正定矩阵,我们则可以给出非常有用的cholesky分解.这些分解的来源就在于矩阵本身存在的特殊的 结构.对于矩阵A,如果没有任何的特殊结构,那么可以给出A=L*U分解,其中L是下三角矩阵且对角线全部为1,U是上三角矩阵但是对角线的值任意,将U正规化成对角线为1的矩阵,产生分解A = L*D*U, D为对角矩阵.如果A为对称矩阵,那么会产生A=L*D*L分解.如果A为正定对称矩阵,那么就会产生A=G*G,可以这…
这部分矩阵运算的知识是三维重建的数据基础. 矩阵分解 求解线性方程组:,其解可以表示为. 为了提高运算速度,节约存储空间,通常会采用矩阵分解的方案,常见的矩阵分解有LU分解.QR分解.Cholesky分解.Schur分解.奇异分解等.这里简单介绍几种. LU分解:如果方阵A是非奇异的,LU分解总可进行.一个矩阵可以表示为一个交换下三角矩阵和一个上三角矩阵的乘机.更整洁的形式是:一个矩阵可以表示为一个上三角矩阵和一个下三角矩阵以及一个置换矩阵的形式,即: 从而方程的解可以表示为 QR分解:矩阵可以…
原帖地址: http://blog.sina.com.cn/s/blog_6109b5d00101ag7a.html       在摄影测量和计算机视觉中,考虑最优解问题时,经常要用到SVD分解.奇异值分解 (singular value decomposition,SVD) 是一种可靠地正交矩阵分解法,但它比QR分解法要花上近十倍的计算时间.在matlab中,[U,S,V]=svd(A),其中U和V代表二个相互正交矩阵,而S代表一对角矩阵. 和QR分解法相同者, 原矩阵A不必为正方矩阵.使用S…
首先,有y = AX,将A看作是对X的线性变换 但是,如果有AX = λX,也就是,A对X的线性变换,就是令X的长度为原来的λ倍数. *说起线性变换,A肯定要是方阵,而且各列线性无关.(回想一下,A各列相当于各个坐标轴,X各个分量相当于各个坐标轴的“基本向量”长度) (同一长度的各个方向的向量,变换前和变换后,有些前后只是拉伸了,方向不变:有些拉伸了,方向同时也改变了) 这样的X1,X2……Xn称为特征向量, λ1, λ2…… λn为对应的特征值. 如果有S矩阵,全是特征特征向量,也就是 S =…
一些无关紧要的Q&A Q:你是怎么想到这个花里胡哨的算法的啊? A:前几天学习线性代数时有幸和Magolor大佬讨论到 $LU$ 分解在多解时的时间复杂度问题,于是yy出了这个奇怪(?)的算法. Q:为什么叫 $QGXZ$ 分解呀?你是不是在装逼啊? A:这个名字是Magolor大佬起的,我也只能无条件服从咯~ 如有雷同绝非学术不端~ Q:Magolor大佬太强啦~ A:恭喜我们达成了共识~ 概述 $QGXZ$ 分解,是用于解决多线性方程组通解问题的算法.具体来讲: 给出 $n\times m$…
先贴上我对Opencv3.1中sift源码的注释吧,虽然还有很多没看懂.先从detectAndCompute看起 void SIFT_Impl::detectAndCompute(InputArray _image, InputArray _mask, std::vector<KeyPoint>& keypoints, OutputArray _descriptors, bool useProvidedKeypoints) { , actualNOctaves = , actualNL…
               本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新  开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 在前几篇关于Math.NET的博客中(见上面链接),主要是介绍了Math.NET中主要的数值功能,并进行了简单的矩阵向量计算例子,接着使用Math.NET的矩阵等对象,对3种常用的矩阵数据交换格式的读写.一方面可以了解Math.NET的使用,另一方面以后也可以直接读取和保存数据为这两种格式,给大家的…
               本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新  开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 上个月对Math.NET的基本使用进行了介绍,主要内容有矩阵,向量的相关操作,解析数据格式,数值积分,数据统计,相关函数,求解线性方程组以及随机数发生器的相关内容.这个月接着深入发掘Math.NET的各种功能,并对源代码进行分析,使得大家可以尽可能的使用Math.NET在.NET平台下轻易的开发数学计算相…