AT3611 Tree MST】的更多相关文章

题面 题解 考虑最小化\(dis(x, y)\) 这里需要对一种奇怪的最小生成树算法:Boruvka算法有深刻的理解. 考虑该算法的执行过程,我们可以考虑进行点分治,每次找到离分治重心最近的点,然后将分治重心的所有子树的点全部向这个点连边,边数是\(\mathrm{O}(\)子树大小\()\)的,所以总边数在\(\mathrm{O}(n\log_2n)\)级别,最后将这些边跑kruskal求出最小生成树就可以了,总复杂度\(\mathrm{O}(n\log_2^2 n)\). 代码 #inclu…
正解:点分治+最小生成树 解题报告: 传送门! 然后这题麻油翻译,,,所以这边的建议是先说下题意呢亲 所以题意大概就是说,给一棵n个节点的树,树上每个点都有个权值,然后构造一个完全图,(u,v)之间连边的权值为dis(u,v)+w[u]+w[v],求最小生成树权值和 然后这题就考虑点分治昂,基本套路不说,说说具体实现 就对当前中心x,求出它的子树中所有点到它的距离dis,然后找到所有距离中的min,把所有连边和它相加放入候选名单中 最后跑个kruscal就好 具体正确性我等下证明趴QAQ? 然后…
[AtCoder3611]Tree MST(点分治,最小生成树) 题面 AtCoder 洛谷 给定一棵\(n\)个节点的树,现有有一张完全图,两点\(x,y\)之间的边长为\(w[x]+w[y]+dis(x,y)\),其中\(dis\)表示树上两点的距离. 求完全图的\(MST\). 题解 首先连边的这个式子可以直接转换成树上的两点间的路径,所以接下来只考虑\(dis(x,y)\). 考虑\(Boruvka\)算法的执行过程,每次都会选择到达一个点集最近的一个点,然后将他们连边. 现在考虑模拟这…
题目 这个题的输入首先就是一棵树,我们考虑一下点分 我们对于每一个分治重心考虑一下跨过这个分治重心的连边情况 就是把当前分治区域内所有的点向距离分治重心最近的点连边 考虑一下这个算法的正确性,如果我们已经对一个联通块内部形成了一个\(mst\),我们需要把这个联通块和另外一个联通块合并 如果这个新的联通块出现会使得原来联通块的\(mst\)改变,那么新出现的边也只会是原来联通块的点和新联通块到这个点距离最近的点之间的边,而这些最近的点又都是一个,所以我们就可以大大简化连边数量了 所以这个点分的过…
做一次MST, 枚举不在最小生成树上的每一条边(u,v), 然后加上这条边, 删掉(u,v)上的最大边(或严格次大边), 更新答案. 树链剖分然后ST维护最大值和严格次大值..倍增也是可以的... ------------------------------------------------------------------------------ #include<bits/stdc++.h>   using namespace std;   #define b(i) (1 <&l…
Problem \(\mathrm{Code~Festival~2017~Final~J}\) 题意概要:一棵 \(n\) 个节点有点权边权的树.构建一张完全图,对于任意一对点 \((x,y)\),连一条长度为 \(w[x] + w[y]+ dis(x, y)\) 的边.求这张图的最小生成树. \(n\leq 2\times 10^5\) Solution 在操场上晒太阳时想到的做法,求 \(\mathrm{MST}\) 可以使用另一种贪心算法:每次找到每个点连出去的最短的边,并将其合并,一次是…
本文链接:http://www.cnblogs.com/Ash-ly/p/5409904.html 普瑞姆(Prim)算法: 假设N = (V, {E})是连通网,TE是N上最小生成树边的集合,U是是顶点集V的一个非空子集,算法从U = {uo}(u0 属于 V),TE = {}开始,重复执行下述动作: 在所有u属于U,v属于V - U的边(u, v),且(u, v)属于E中找一条代价最小的边(u0, v0)并并入集合TE中,同时v0并入U,直至U = V为止.此时TE中必有n - 1条边,则T…
本文链接:http://www.cnblogs.com/Ash-ly/p/5409265.html 引导问题: 假设要在N个城市之间建立通信联络网,则连通N个城市只需要N - 1条线路.这时,自然会考虑这样一个问题,如何在最省经费的前提下建立这个通信网. 基于问题所建立的定义: 可以用联通网来表示N个城市以及N个城市之间可能设置的连通线路,其中网的顶点表示城市,边表示两城市之间的线路,赋予边的权值表示相应的代价.对于N个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网.现在,…
题意:给一张由白边和黑边构成的无向图,求是否存在一个生成树,使白边的数量为一个斐波那契数. 分析:白边权值为1,黑边权值为0.求出该图的最小生成树和最大生成树,若这两个值之间存在斐波那契数,则可以,若不存在或者所给的图不是连通图,则不行. #include<bits/stdc++.h> using namespace std; const int maxn = 1e5+5; typedef long long LL; set<int> dp; struct Edge{ int u,…
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定 N 个点,第 i 点有一个点权 Xi,再给定一棵边带权的树,第 i 条 (Ai, Bi) 边权为 Ci. 构建一个完全图,完全图中边 (i, j) 的边权为 dist(i, j) + Xi + Xj,其中 dist(i, j) 是点 i 与点 j 在树上的距离. 求该完全图的最小生成树. Constraints 2≤N≤200000; 1≤Xi≤10^9;…