基于机器学习的web异常检测 from: https://jaq.alibaba.com/community/art/show?articleid=746 Web防火墙是信息安全的第一道防线.随着网络技术的快速更新,新的黑客技术也层出不穷,为传统规则防火墙带来了挑战.传统web入侵检测技术通过维护规则集对入侵访问进行拦截.一方面,硬规则在灵活的黑客面前,很容易被绕过,且基于以往知识的规则集难以应对0day攻击:另一方面,攻防对抗水涨船高,防守方规则的构造和维护门槛高.成本大. 基于机器学习技术的…
基于机器学习的web异常检测 Web防火墙是信息安全的第一道防线.随着网络技术的快速更新,新的黑客技术也层出不穷,为传统规则防火墙带来了挑战.传统web入侵检测技术通过维护规则集对入侵访问进行拦截.一方面,硬规则在灵活的黑客面前,很容易被绕过,且基于以往知识的规则集难以应对0day攻击:另一方面,攻防对抗水涨船高,防守方规则的构造和维护门槛高.成本大. 基于机器学习技术的新一代web入侵检测技术有望弥补传统规则集方法的不足,为web对抗的防守端带来新的发展和突破.机器学习方法能够基于大量数据进行…
参考https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html#sklearn.ensemble.IsolationForest.fit , max_samples=’auto’, contamination=’legacy’, max_features=, warm_start=False) 孤立森林算法 使用孤立森林算法对每个样本返回异常分数 孤立森林通过随机选取一个特征来“隔…
论文http://202.119.32.195/cache/10/03/cs.nju.edu.cn/da2d9bef3c4fd7d2d8c33947231d9708/tkdd11.pdf 1. INTRODUCTION 异常是与正常样例有着不同的数据特性的数据模式.检测异常的能力具有重要的相关性,异常经常在多种应用领域中提供关键和可操作的信息.比如在信用卡交易中能够显示信用卡的使用有欺诈行为:在天文图像中的异常点能够说明发现了新的星星:一个不正常的计算机网络流量模式能够代表(stand for)…
参考:https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-examples-ensemble-plot-isolation-forest-py 代码: print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import Isolation…
摘自<Asp.Net 本质论>作者:郝冠军 /* 为了简化基于TCP协议的监听程序,.NET在System.Net.Sockets命名空间中提供了TcpListerer类,使用它,在构造函数中传递一组网络端点信息就可以准备好监听参数,而不再需要设置使用的网络协议等细节,调用Start方法之后,监听工作开始.AcceptTcpClient方法将阻塞进程,知道一个客户端的连接到达监听器,这个方法将返回一个代表客户端连接的代理对象 */ class TcpListener_Study { publi…
大家好,先自我介绍一下,我是王睿.之前在Facebook/Instagram担任AI技术负责人,现在DataPipeline任Head of AI,负责研发企业级业务异常检测产品,旨在帮助企业一站式解决业务自动化监控和异常检测问题.今天主要从以下四方面跟大家分享构建该产品的思路和实战. 一.为什么需要人工智能业务异常检测系统 企业会因为业务异常无法得到及时解决而遭受较大的损失,比如某知名互联网企业,将原价为50元的优惠券以18元卖出,导致用户在短时间内大量疯抢,损失惨重.同样,在金融.零售.电商…
之前一直在看Standford公开课machine learning中Andrew老师的视频讲解https://class.coursera.org/ml/class/index 同时配合csdn知名博主Rachel Zhang的系列文章进行学习. 不过博主的博客只写到“第十讲 数据降维” http://blog.csdn.net/abcjennifer/article/details/8002329,后面还有三讲,内容比较偏应用,分别是异常检测.大数据机器学习.photo OCR.为了学习的完…
在给定的数据集,我们假设数据是正常的 ,现在需要知道新给的数据Xtest中不属于该组数据的几率p(X). 异常检测主要用来识别欺骗,例如通过之前的数据来识别新一次的数据是否存在异常,比如根据一个用户以前的使用习惯(数据)来判断这次使用的用户是不是以前的用户.或者根据之前CPU正常运行时候的的用量数据来判断当前状态下的CPU是否正常工作. 这里我们通过密度估计来进行判断:if   P(X) >ε时候,为normal(正常)<ε 的时候为异常 . 我们用x(i)来表示用户的第i个特征,模型P(x)…
1. 异常检测 VS 监督学习 0x1:异常检测算法和监督学习算法的对比 总结来讲: . 在异常检测中,异常点是少之又少,大部分是正常样本,异常只是相对小概率事件 . 异常点的特征表现非常不集中,即异常种类非常多,千奇百怪.直白地说:正常的情况大同小异,而异常各不相同.这种情况用有限的正例样本(异常点)给有监督模型学习就很难从中学到有效的规律 0x2:常见的有监督学习检测算法 这块主要依靠庞大的打标样本,借助像DLearn这样的网络对打标训练样本进行拟合 0x3:常见的异常检测算法 基于模型的技…
版权声明:本文为博主原创文章,转载或者引用请务必注明作者和出处,尊重原创,谢谢合作 https://blog.csdn.net/u012328159/article/details/51462942 异常检测(anomaly detection)   关于异常检测(anomaly detection)本文主要介绍一下几个方面: 异常检测定义及应用领域 常见的异常检测算法 高斯分布(正态分布) 异常检测算法 评估异常检测算法 异常检测VS监督学习 如何设计选择features 多元高斯分布 多元高…
novelty detection:当训练数据中没有离群点,我们的目标是用训练好的模型去检测另外发现的新样本 outlier  dection:当训练数据中包含离群点,模型训练时要匹配训练数据的中心样本,忽视训练样本中的其他异常点. 一.outlier  dection 1.孤立森林(Isolation Forest) iForest适用于连续数据(Continuous numerical data)的异常检测,将异常定义为“容易被孤立的离群点(more  likely to be separa…
在Github上搜索“Anomaly Detection”,Twitter的异常检测框架(基于R语言)高居榜首,可见效果应该不错: 但是活跃度并不高,3-4年没人维护了: 因此在使用时难免会遇到一些坑,整个使用方式如下(红色部分,就是直接在RStudio中运行时,可能有异常的地方): install.packages("devtools") devtools::install_github("twitter/AnomalyDetection") library(An…
1. 异常检测简介 异常检测,它的任务是发现与大部分其他对象不同的对象,我们称为异常对象.异常检测算法已经广泛应用于电信.互联网和信用卡的诈骗检测.贷款审批.电子商务.网络入侵和天气预报等领域.这些异常对象的主要成因有:来源于不同的模式.自然变异.数据测量以及随机误差等.而常见的异常检测算法都是针对独立的数据点进行异常检测,此时异常检测又称为离群点检测.而在序列数据的异常检测过程中,我们既可以直接使用对序列进行异常检测的算法,也可以先对序列数据进行特征提取然后转化为传统的离群点检测. 2. 基本…
结合CNN的可以参考:http://fcst.ceaj.org/CN/article/downloadArticleFile.do?attachType=PDF&id=1497 除了行为,其他还结合了时序的异常检测的:https://conference.hitb.org/hitbsecconf2018ams/materials/D1T2%20-%20Eugene%20Neyolov%20-%20Applying%20Machine%20Learning%20to%20User%20Behavi…
杜伦大学提出GANomaly:无需负例样本实现异常检测 本期推荐的论文笔记来自 PaperWeekly 社区用户 @TwistedW.在异常检测模块下,如果没有异常(负例样本)来训练模型,应该如何实现异常检测?本文提出的模型——GANomaly,便是可以实现在毫无异常样本训练下对异常样本做检测. 关于作者:武广,合肥工业大学硕士生,研究方向为图像生成. ■ 论文 | GANomaly: Semi-Supervised Anomaly Detection via Adversarial Train…
# coding=utf-8 import sys import socket import re def check_webserver(address, port, resource): address = socket.gethostbyname(address) if not resource.startswith('/'): resource = '/' + resource request_string = 'GET %s HTTP/1.0\r\n\r\n' % (resource)…
EDADS系统包含了众多的时序模型和异常检测模型,这些模型的处理会输入很多参数,若仅使用默认的参数,那么时序模型预测的准确率将无法提高,异常检测模型的误报率也无法降低,甚至针对某些时间序列这些模型将无法使用. 若想有效地使用EGADS系统,那么必须了解EGADS系统的核心算法思想,并据此调优模型参数,来提高异常检测的准确率.降低误报率. 笔者通过阅读EDADS系统的TimeSeries模型和AnomalyDetection模型的源码,整理了模型的处理流程和常用算法的核心思想.如本文有理解错误之处…
对于异常检测算法,使用特征是至关重要的,下面谈谈如何选择特征: 异常检测假设特征符合高斯分布,如果数据的分布不是高斯分布,异常检测算法也能够工作,但是最好还是将数据转换成高斯分布,例如使用对数函数:…
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列 在本篇我们会讨论HMM模型最后一个问题的求解,即即给定模型和观测序列,求给定观测序列条件下,最可能出现的对应的隐藏状态序列.在阅读本篇前,建议先阅读这个系列的第一篇以熟悉HMM模型. HMM模型的解码问题最常用的算法是维特比算法,当然也有其他的算法可以求解这个问题.同时维特比算法是一个通用的求…
AIOps探索:基于VAE模型的周期性KPI异常检测方法 from:jinjinlin.com   作者:林锦进 前言 在智能运维领域中,由于缺少异常样本,有监督方法的使用场景受限.因此,如何利用无监督方法对海量KPI进行异常检测是我们在智能运维领域探索的方向之一.最近学习了清华裴丹团队发表在WWW 2018会议上提出利用VAE模型进行周期性KPI无监督异常检测的论文:<Unsupervised Anomaly Detection via Variational Auto-Encoder for…
使用google翻译自:https://software.seek.intel.com/dealing-with-outliers 数据分析中的一项具有挑战性但非常重要的任务是处理异常值.我们通常将异常值定义为与其余数据群1不一致的样本或事件.异常值通常包含有关影响数据生成过程2的系统和实体的异常特征的有用信息. 异常检测算法的常见应用包括: 入侵检测系统信用卡诈骗有趣的传感器事件医学诊断在本文中,我们将重点介绍异常检测 - 信用卡欺诈的最常见应用之一.通过一些简单的离群值检测方法,可以在真实世…
Google Play作为众所周知的在线应用市场,因为审查制度的松散,经常会有一些恶意软件伪装成其他应用混入其中.此前阿里聚安全小编就报道了2例关于恶意软件伪装在Google Play上的事件:<Google Play商店的“系统更新”隐藏间谍软件,数百万用户中招>和<打开手机电筒就泄露了银行卡密码?>.一旦用户从应用市场下载APP到手机上后,谷歌便无法监视和检测应用程序的恶意行为. 近日,谷歌为Android用户带来了一个好消息.在Google I/O2017大会上,谷歌发布了一…
基于Django Restframework和Spark的异常检测系统,数据库为MySQL.Redis, 消息队列为Celery,分析服务为Spark SQL和Spark Mllib,使用kmeans和随机森林算法对网络服务数据进行分析:数据分为全量数据和正常数据,每天通过自动跑定时job从全量数据中导入正常数据供算法做模型训练. 使用celery批量导入(指定时间段)正常样本到数据库 def add_normal_cat_data(data): """ 构建数据model…
基于图的异常检测(三):GraphRAD 风浪 一个快乐的数据玩家/风控/图挖掘 24 人赞同了该文章 论文:<GraphRAD: A Graph-based Risky Account Detection System>作者:Jun Ma(Amazon),Danqing Zhang(Berkeley)来源:MLG ' 18 本文介绍Amazon基于图的欺诈交易账户检测系统,相比LOCKINFER 和 OddBall,本文是面向实际业务设计的检测系统,并使用了标签数据. 早期做过十分类似的项目…
本文为博主翻译自:Jinwon的Variational Autoencoder based Anomaly Detection using Reconstruction Probability,如侵立删 http://dm.snu.ac.kr/static/docs/TR/SNUDM-TR-2015-03.pdf 摘要 我们提出了一种利用变分自动编码器重构概率的异常检测方法.重建概率是一种考虑变量分布变异性的概率度量.重建概率具有一定的理论背景,使其比重建误差更具有原则性和客观性,而重建误差是自…
记得在做电商运营初期,每每为我们频道的促销活动锁取得的“超高”销售额感动,但后来随着工作的深入,我越来越觉得这里面水很深.商家运营.品类运营不断的通过刷单来获取其所需,或是商品搜索排名,或是某种kpi指标,但这些所谓的“脏数据”,却妨碍了平台运营者对于真实数据的分析和促销效果的评估.今天我们讨论一种非监督学习算法(Unsupervised Learning Algorithm),试图在真实数据中,找出并标注异常数据. 该算法是基于高斯分布的异常检测算法(Anomaly Detection Alg…
对于大多数互联网公司,基于日志分析的WEB入侵检测分析是不可或缺的. 那么今天我就给大家讲一讲如何用graylog的extractor来实现这一功能. 首先要找一些能够识别的带有攻击行为的关键字作为匹配的规则. 由于我不是专门搞安全的,所以在网上找了一些软waf的规则脚本. 剩下来的工作就可以交给Graylog的extractor实现了. 这次介绍一下extractor的Copy input用法. (1)waf规则脚本如下: \.\./ select.+(from|limit) (?:(unio…
摘要:RRCF是亚马逊提出的一个流式异常检测算法,是对孤立森林的改进,可对时序或非时序数据进行异常检测.本文是我从事AIOps研发工作时所做的基于RRCF的时序异常检测方案. 1.      数据格式 将时间序列以滑动窗口的形式转换为d维空间点.例如对于时间序列[1,2,3,4,5,6,7,8],d=5,那么可以将该时间序列转换为4个空间点[(1,2,3,4,5),(2,3,4,5,6),(3,4,5,6,7),(4,5,6,7,8)].RCF以这样的高维空间点进行建模和检测. 2.     …
据我们所知,有‘已知的已知’,有些事,我们知道我们知道:我们也知道,有 ‘已知的未知’,也就是说,有些事,我们现在知道我们不知道.但是,同样存在‘不知的不知’——有些事,我们不知道我们不知道. 上一章中分类和回归都属于监督学习.当目标值是未知时,需要使用非监督学习,非监督学习不会学习如何预测目标值.但是,它可以学习数据的结构并找出相似输入的群组,或者学习哪些输入类型可能出现,哪些类型不可能出现. 5.1 异常检测 异常检测常用于检测欺诈.网络攻击.服务器及传感设备故障.在这些应用中,我们要能够找…