【2017山东day7】养猫】的更多相关文章

[2017山东day7]养猫 Description 你养了一只猫,为了让它快乐地成长,你需要合理地安排它每天的作息时间.假设一天分为$ n \(个时刻,猫在每个时刻要么是吃东西,要么是睡觉.在第\) i $个时刻,假如猫是去吃东西,那么它能获得愉悦值 \(ei\),假如是去睡觉,那么能获得的愉悦值为 \(si\). 猫要成长,不仅仅需要快乐,还需要健康的作息.经过研究,对于每一个连续的长度为 k 的作息区间,即所有的时刻区间$ [i,i+k−1],1≤i≤n−k+1$,猫都要至少有 \(ms\…
「2017 山东三轮集训 Day7」Easy 练习一下动态点分 每个点开一个线段树维护子树到它的距离 然后随便查询一下就可以了 注意线段树开大点... Code: #include <cstdio> #include <cctype> #include <algorithm> using std::min; template <class T> void read(T &x) { x=0;char c=getchar(); while(!isdigi…
[LOJ6077]「2017 山东一轮集训 Day7」逆序对 题目描述 给定 n,k ,请求出长度为 n的逆序对数恰好为 k 的排列的个数.答案对 109+7 取模. 对于一个长度为 n 的排列 p ,其逆序对数即满足 i<j 且 pi>pj 的二元组 (i,j)的数量. 输入格式 一行两个整数 n,k. 输出格式 一行,表示答案. 样例输入 7 12 样例输出 531 数据范围与提示 对于 20% 的数据,n,k≤20:对于 40% 的数据,n,k≤100:对于 60% 的数据,n,k≤50…
2017 山东二轮集训 Day7 国王 题目大意 给定一棵树,每个点有黑白两种颜色,定义一条简单路径合法当且仅当路径上所有点黑色与白色数量相等,求有多少非空区间 \([L,R]\) ,使得所有编号 \(\in[L,R]\) 的点形成的本质不同的合法简单路径数多于所有编号 \(\notin[L,R]\) 的点形成的本质不同的合法路径树. 题解 考虑所有以 \(x\) 为一个端点的合法简单路径数量为 \(F_x\) . 设两端点编号分别位于 \([L,R]\) 之内和之外的路径树为 \(M\) 那么…
#6077. 「2017 山东一轮集训 Day7」逆序对   题目描述 给定 n,k n, kn,k,请求出长度为 n nn 的逆序对数恰好为 k kk 的排列的个数.答案对 109+7 10 ^ 9 + 710​9​​+7 取模. 对于一个长度为 n nn 的排列 p pp,其逆序对数即满足 i<j i < ji<j 且 pi>pj p_i > p_jp​i​​>p​j​​ 的二元组 (i,j) (i, j)(i,j) 的数量. 输入格式 一行两个整数 n,k n,…
[LOJ6067][2017 山东一轮集训 Day3]第三题 FFT 题目大意 给你 \(n,b,c,d,e,a_0,a_1,\ldots,a_{n-1}\),定义 \[ \begin{align} x_k&=b\times c^{4k}+d\times c^{2k}+e\\ f(x)&=\sum_{i=0}^{n-1}a_ix^i \end{align} \] 求 \(f(x_0),f(x_1),\ldots,f(x_{n-1})\). 对 \({10}^6+3\) 取模. 题解 直接多…
Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都有高度,对于编号为 $ i $ 座塔,其高度为 $ i $.对于一座塔,需要满足它与前面以及后面的塔的距离大于等于自身高度(不存在则没有限制).问有多少建造方案.答案对 $ m $ 取模. 塔不要求按编号为顺序建造. 输入格式 一行三个整数 $ n, l, m $. 输出格式 输出一个整数,代表答案…
Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\),设$ path(u,v) \(表示\) u$ 到 $v \(的路径,\)dist(u,v) \(表示\) u$ 到\(v\) 的距离,希望你求出 Input 第一行一个整数 \(type =0/1\)表示这个测试点的数据类型. 第二行两个整数 \(n,q\). 接下来$ n−1$ 行,每行三个整数…
Loj 6068. 「2017 山东一轮集训 Day4」棋盘 题目描述 给定一个 $ n \times n $ 的棋盘,棋盘上每个位置要么为空要么为障碍.定义棋盘上两个位置 $ (x, y),(u, v) $ 能互相攻击当前仅当满足以下两个条件: $ x = u $ 或 $ y = v $ 对于 $ (x, y) $ 与 $ (u, v) $ 之间的所有位置,均不是障碍. 现在有 $ q $ 个询问,每个询问给定 $ k_i $,要求从棋盘中选出 $ k_i $ 个空位置来放棋子,问最少互相能攻…
「2017 山东一轮集训 Day5」苹果树 \(n\leq 40\) 折半搜索+矩阵树定理. 没有想到折半搜索. 首先我们先枚举\(k\)个好点,我们让它们一定没有用的.要满足这个条件就要使它只能和坏点相连.其他的点没有要求.这样算出来了至少\(k\)个点没有用的生成树个数,我们要得到恰好\(k\)个点的生成树个数就简单容斥一下就好了. 然后我们要得到有\(k\)个点没有用的情况下的点集的方案数.看到\(40\)这个范围我们容易想到折半搜索. 然后就没了. 但是我没写容斥,写的枚举集合划分(被吊…