使用谷歌CoLaboratory训练神经网络】的更多相关文章

前言 Colaboratory 是一个 Google 研究项目,旨在帮助传播机器学习培训和研究成果.它是一个 Jupyter 笔记本环境,不需要进行任何设置就可以使用,并且完全在云端运行.Colaboratory 笔记本存储在 Google 云端硬盘 (https://drive.google.com/) 中,并且可以共享,就如同您使用 Google 文档或表格一样. CoLaboratory 首先,访问 CoLaboratory 网站(http://g.co/colab),注册后接受使用该工具…
Colaboratory 是一个 Google 研究项目,旨在帮助传播机器学习培训和研究成果.它是一个 Jupyter 笔记本环境,不需要进行任何设置就可以使用,并且完全在云端运行.Colaboratory 笔记本存储在 Google 云端硬盘 (https://drive.google.com/) 中,并且可以共享,就如同您使用 Google 文档或表格一样.Colaboratory 可免费使用.本文介绍如何使用 Google CoLaboratory 训练神经网络. 工具链接:https:/…
在这篇文章中,会实现一个BP(backpropagation)算法,并将之应用到手写的阿拉伯数字(0-9)的自动识别上. 训练数据集(training set)如下:一共有5000个训练实例(training instance),每个训练实例是一个400维特征的列向量(20*20 pixel image).用 X 矩阵表示整个训练集,则 X 是一个 5000*400 (5000行 400列)的矩阵 另外,还有一个5000*1的列向量 y ,用来标记训练数据集的结果.比如,第一个训练实例对应的输出…
原文链接:https://developers.google.com/machine-learning/crash-course/training-neural-networks/ 反向传播算法是最常见的一种神经网络训练算法.借助这种算法,梯度下降法在多层神经网络中将成为可行方法.TensorFlow 可自动处理反向传播算法,因此不需要对该算法作深入研究. 1- 最佳做法 1.1 失败案例 很多常见情况都会导致反向传播算法出错. 梯度消失 较低层(更接近输入)的梯度可能会变得非常小.在深度网络中…
怎么选取训练神经网络时的Batch size? - 知乎 https://www.zhihu.com/question/61607442 深度学习中的batch的大小对学习效果有何影响? - 知乎 https://www.zhihu.com/question/32673260 训练神经网络时如何确定batch size? - 夕小瑶的文章 - 知乎 https://zhuanlan.zhihu.com/p/27763696 如何理解深度学习分布式训练中的large batch size与lear…
pytorch1.0批训练神经网络 import torch import torch.utils.data as Data # Torch 中提供了一种帮助整理数据结构的工具, 叫做 DataLoader, 能用它来包装自己的数据, 进行批训练. torch.manual_seed(1) # reproducible # 批训练的数据个数 BATCH_SIZE = 5 BATCH_SIZE = 8 x = torch.linspace(1, 10, 10) # this is x data (…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点 OUTPUT_NODE = 10 # 输出节点 LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数 LEARNING_RATE_BASE = 0.8 LEARNING_RATE_DECAY = 0.9…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点 OUTPUT_NODE = 10 # 输出节点 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数 LEARNING_RATE_BASE = 0.01 LEARNING_RATE_DECAY = 0.99 REGULARAZTION_RATE = 0…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点 OUTPUT_NODE = 10 # 输出节点 LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数 LEARNING_RATE_BASE = 0.01 LEARNING_RATE_DECAY = 0.…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点 OUTPUT_NODE = 10 # 输出节点 LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数 LEARNING_RATE = 0.1 REGULARAZTION_RATE = 0.0001 TR…