python机器学习——随机梯度下降】的更多相关文章

上一篇我们实现了使用梯度下降法的自适应线性神经元,这个方法会使用所有的训练样本来对权重向量进行更新,也可以称之为批量梯度下降(batch gradient descent).假设现在我们数据集中拥有大量的样本,比如百万条样本,那么如果我们现在使用批量梯度下降来训练模型,每更新一次权重向量,我们都要使用百万条样本,训练时间很长,效率很低,我们能不能找到一种方法,既能使用梯度下降法,但是又不要每次更新权重都要使用到所有的样本,于是随机梯度下降法(stochastic gradient descent…
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 项目合作联系QQ:231469242 http://scikit-learn.org/stable/modules/sgd.html Stochasti…
梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了.其中m是训练集的记录条数,i是参数的个数. 1.批量梯度下降的求解思路如下: (1)将J(theta)对theta求偏导,得到每个theta对应的的梯度 (2)由于是…
实现:# -*- coding: UTF-8 -*-""" 练习使用随机梯度下降算法"""import numpy as npimport math __author__ = 'zhen'# 生成测试数据x = 2 * np.random.rand(100, 1) # 随机生成100*1的二维数组,值分别在0~2之间 y = 4 + 3 * x + np.random.randn(100, 1) # 随机生成100*1的二维数组,值分别在4~11…
本文介绍了机器学习中基本的优化算法—梯度下降算法和随机梯度下降算法,以及实际应用到线性回归.Logistic回归.矩阵分解推荐算法等ML中. 梯度下降算法基本公式 常见的符号说明和损失函数 X :所有样本的特征向量组成的矩阵 x(i) 是第i个样本包含的所有特征组成的向量x(i)=(x(i)1,x(i)2...,x(i)n) y(i) 第i个样本的label,每个样本只有一个label,y(i)是标量(一个数值) hθ(x(i)) :拟合函数,机器学习中可以用多种类型的拟合函数 θ 是函数变量,…
梯度下降和随机梯度下降 梯度下降在深度学习中很少被直接使用,但理解梯度的意义以及沿着梯度反方向更新自变量可能降低目标函数值的原因是学习后续优化算法的基础.随后,将引出随机梯度下降(stochastic gradient descent). 一维梯度下降 以简单的一维梯度下降为例,解释梯度下降算法可能降低目标函数值的原因.假设连续可导的函数f:ℝ→ℝ的输入和输出都是标量.给定绝对值足够小的数ϵ,根据泰勒展开公式,得到以下的近似: 学习率 梯度下降算法中的正数η通常叫作学习率.这是一个超参数,需要人…
梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了.其中m是训练集的记录条数,j是参数的个数. 1.批量梯度下降的求解思路如下: (1)将J(theta)对theta求偏导,得到每个theta对应的的梯度 (2)由于是…
问题的引入: 考虑一个典型的有监督机器学习问题,给定m个训练样本S={x(i),y(i)},通过经验风险最小化来得到一组权值w,则现在对于整个训练集待优化目标函数为: 其中为单个训练样本(x(i),y(i))的损失函数,单个样本的损失表示如下: 引入L2正则,即在损失函数中引入,那么最终的损失为: 注意单个样本引入损失为(并不用除以m): 正则化的解释 这里的正则化项可以防止过拟合,注意是在整体的损失函数中引入正则项,一般的引入正则化的形式如下: 其中L(w)为整体损失,这里其实有: 这里的 C…
梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了.其中m是训练集的记录条数,j是参数的个数. 1.批量梯度下降的求解思路如下: (1)将J(theta)对theta求偏导,得到每个theta对应的的梯度 (2)由于是…
  梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent).随机梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent).其中小批量梯度下降法也常用在深度学习中进行模型的训练.接下来,我们将对这三种不同的梯度下降法进行理解.   为了便于理解,这里我们将使用只含有一个特征的线性回归来展开.此时线性回归的假设函数为: \[ h_{\theta…