打表+暴搜 这道题目,显然是需要打表的,不过打表的方式可以有很多. 我是打了两个表,分别表示每个数字所需的火柴棒根数以及从一个数字到另一个数字,除了需要去除或加入的火柴棒外,至少需要几根火柴棒. 然后我们就可以暴搜了,大体就是枚举等式左边两个数每一位的值,并枚举中间的运算符是\(+\)还是\(-\),然后计算出等式右边的值,判断是否合法. 中间过程可以加上一些剪枝. 注意当火柴棒从某一位移到另一位时,我们可以规定,去除火柴棒需要算步数,加入火柴棒则无需算步数,这样就可以避免重复了. 具体实现有一…
可持久化并查集 显然是可持久化并查集裸题吧... 就是题面长得有点恶心,被闪指导狂喷. 对于\(K\)操作,直接\(O(1)\)赋值修改. 对于\(R\)操作,并查集上直接连边. 对于\(T\)操作,先询问当前是否连通,若联通再询问\(t\)次操作前是否连通. 代码 #include<bits/stdc++.h> #define Tp template<typename Ty> #define Ts template<typename Ty,typename... Ar>…
几个性质 我们通过推式子可以发现: \[B⇒AC⇒AAB⇒AAAC⇒C\] \[C⇒AB⇒AAC⇒AAAB⇒B\] 也就是说: 性质一: \(B,C\)可以相互转换. 则我们再次推式子可以发现: \[B⇒AC⇒AB\] 也就是说: 性质二: 在\(B\)或\(C\)之前可以任意加或减少若干个\(A\). 同样,我们可以发现: \[A⇒BC⇒BB\] 也就是说: 性质三: 在\(B\)或\(C\)之前可以任意加偶数个\(B\)或\(C\). 有了这些性质,你以为就做完了吗? 闪指导\(hl666\…
树形\(DP\) 考虑设\(f_{i,j,k}\)表示在\(i\)的子树内,从\(i\)向下的最长链长度为\(j\),\(i\)子树内直径长度为\(k\)的概率. 然后我们就能发现这个东西直接转移是几乎不可能的. 所以我们在转移时要开个辅助数组\(s_{op,x,y,k}\),其中\(op\)用于滚存,表示最长链为\(x\),次长链为\(y\),子节点子树内直径长度小于等于\(k\)的概率. 然后我们只要枚举子节点,再枚举子节点子树内的链长,就可以采用刷表法简便地\(DP\)转移了. 这样看似\…
数位\(DP\) 首先考虑二进制数\(G(i)\)的一些性质: \(G(i)\)不可能有连续两位第\(x\)位和第\(x+1\)位都是\(1\).因为这样就可以进位到第\(x+2\)位.其余情况下,这个\(G(i)\)必然合法. 对于一对\(x,y\)满足\(x<y\),则\(G(x)<G(y)\). 则根据这些性质,我们就可以考虑数位\(DP\). 按照一般数位\(DP\)的套路,我们把对\(a\sim b\)的\(DP\)转化为对\(1\sim a-1\)和\(1\sim b\)的两个\(…
暴力\(DP\) 先考虑暴力\(DP\)该怎么写. 因为每个序列之后是否能加上新的节点只与其结尾有关,因此我们设\(f_i\)为以\(i\)为结尾的最长序列长度. 每次枚举一个前置状态,判断是否合法之后进行转移. 优化\(DP\) 上面做法的瓶颈在于,判断是否合法需要大量时间. 则有一个比较巧妙的做法. 首先对于每一个数\(a_i\),\(\sqrt {max_{x=1}^na_x}\)范围内的某一质数\(j\),我们求出\(p_{i,j}\)表示\(a_i\)是否含有质因数\(j\). 然后,…
原题与此题 原题是一道神仙不可做题,两者区别在于,原题不能有重边和自环. 然而,这题可以有重边... 于是这题就变成了一道大水题. 此题的解法 考虑如何构造. 对于\(n\le10^4\)的情况: 对于\(n>10^4\)的情况: 边上的权值表示边数. 代码 #pragma GCC optimize(2) #include<bits/stdc++.h> #define Tp template<typename Ty> #define Ts template<typena…
推式子 我们设\(n=kp+w\),则: \[(kp+w)a^{kp+w}\equiv b(mod\ p)\] 将系数中的\(kp+w\)向\(p\)取模,指数中的\(kp+w\)根据欧拉定理向\(p-1\)取模,得到: \[wa^{k+w}\equiv b(mod\ p)\] 两边同除以\(wa^w\),得到: \[a^k\equiv\frac b{wa^w}(mod\ p)\] 求答案 考虑到\(p\)很小,因此我们直接枚举\(w\),则右边式子的值可以通过预处理逆元和幂的逆元,\(O(1)…
找环 考虑每次洗牌其实是一次置换的过程,而这样必然就会有循环出现. 因此我们直接通过枚举找出每一个循环,询问时只要找到环上对应的位置就可以了. 貌似比我比赛时被卡成\(30\)分的倍增简单多了? 代码 #include<bits/stdc++.h> #define Tp template<typename Ty> #define Ts template<typename Ty,typename... Ar> #define Reg register #define RI…
思维题 此题应该是比较偏思维的. 假设一次反射后前进的距离是\(2^x(2y+1)\),则显然,它可以看做是前进距离为\(2^x\)的光线经过了\((2y+1)\)次反射,两者是等价的,甚至后者可能还要更优. 因此,我们只需考虑前进距离为\(2^x\)的光线. 也就是说,我们枚举\(x\),统计\((2^x+a_i)\% 2^{x+1}\)与\(b_i\%2^{x+1}\)中众数的出现次数的最大值. 关于众数的统计,我很\(naive\)地开了个\(map\),实际上,似乎用排序可以得到更优秀的…