先来解释一下HMM的向前算法: 前向后向算法是前向算法和后向算法的统称,这两个算法都可以用来求HMM观测序列的概率.我们先来看看前向算法是如何求解这个问题的. 前向算法本质上属于动态规划的算法,也就是我们要通过找到局部状态递推的公式,这样一步步的从子问题的最优解拓展到整个问题的最优解.在这里我们认为随机过程中各个状态St的概率分布,只与它的前一个状态St-1有关,同时任何时刻的观察状态只仅仅依赖于当前时刻的隐藏状态. 在t时刻我们定义观察状态的概率为: αt(i)=P(o1,o2,...ot,i…
先介绍一下马尔科夫模型: 马尔可夫模型(Markov Model)是一种统计模型,广泛应用在语音识别,词性自动标注,音字转换,概率文法等各个自然语言处理等应用领域.经过长期发展,尤其是在语音识别中的成功应用,使它成为一种通用的统计工具. 特征:有限视野.时间不变性 隐性马尔可夫模型: HMM(Hidden Markov Model), 也称隐性马尔可夫模型,是一个概率模型,用来描述一个系统隐性状态的转移和隐性状态的表现概率. 特征:1)问题是基于序列的,比如时间序列,或者状态序列.2)问题中有两…
隐含马尔可夫模型并不是俄罗斯数学家马尔可夫发明的,而是美国数学家鲍姆提出的,隐含马尔可夫模型的训练方法(鲍姆-韦尔奇算法)也是以他名字命名的.隐含马尔可夫模型一直被认为是解决大多数自然语言处理问题最为快速.有效的方法. 现实世界中有一类问题具有明显的时序性,比如路口红绿灯.连续几天的天气变化,我们说话的上下文,HMM的基础假设就是,一个连续的时间序列事件,它的状态受且仅受它前面的N个事件决定,对应的时间序列可以成为N阶马尔可夫链. 假设今天是否有雾霾只由前天和昨天决定,于是就构成了一个2阶马尔可…
MCMC(一)蒙特卡罗方法 MCMC(二)马尔科夫链 MCMC(三)M-H采样和Gibbs采样(待填坑) 在MCMC(一)蒙特卡罗方法中,我们讲到了如何用蒙特卡罗方法来随机模拟求解一些复杂的连续积分或者离散求和的方法,但是这个方法需要得到对应的概率分布的样本集,而想得到这样的样本集很困难.因此我们需要本篇讲到的马尔科夫链来帮忙. 1. 马尔科夫链概述 马尔科夫链定义本身比较简单,它假设某一时刻状态转移的概率只依赖于它的前一个状态.举个形象的比喻,假如每天的天气是一个状态的话,那个今天是不是晴天只…
HMM(隐马尔科夫模型)基本原理及其实现 HMM基本原理 Markov链:如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程.马尔可夫链是时间和状态参数都离散的马尔可夫过程.HMM是在Markov链的基础上发展起来的,由于实际问题比Markov链模型所描述的更为复杂,观察到的时间并不是与状态一一对应的,而是通过一组概率分布相联系,这样的模型称为HMM.HMM是双重随机过程:其中之一是Markov链,这是基本随机过程,它描述状态的转移,是隐含的.…
文章目录 1. 1. 摘要 2. 2. Map-Matching(MM)问题 3. 3. 隐马尔科夫模型(HMM) 3.1. 3.1. HMM简述 3.2. 3.2. 基于HMM的Map-Matching 3.3. 3.3. Viterbi算法 4. 4. 相关部分论文工作 4.1. 4.1. A HMM based MM for wheelchair navigation 4.2. 4.2. MM for low-sampling-rate GPS trajectories 4.3. 4.3.…
谷歌路过这个专门介绍HMM及其相关算法的主页:http://rrurl.cn/vAgKhh 里面图文并茂动感十足,写得通俗易懂,可以说是介绍HMM很好的范例了.一个名为52nlp的博主(google “I Love Natural Language Processing”估计就能找到)翻译后的HMM入门介绍如下,由于原文分了很多章节,我嫌慢了还是一次性整理,长文慎入吧. 一.介绍(Introduction) 我们通常都习惯寻找一个事物在一段时间里的变化模式(规律).这些模式发生在很多领域,比如计…
本系列文章摘自 52nlp(我爱自然语言处理: http://www.52nlp.cn/),原文链接在 HMM 学习最佳范例,这是针对 国外网站上一个 HMM 教程 的翻译,作者功底很深,翻译得很精彩,且在原文的基础上还提供了若干程序实例,是初学者入门 HMM 的好材料.原文中存在若干笔误,这里结合 HMM 学习最佳范例 的作者和读者的建议,一并做了修改,供大家参考. 相关链接 HMM 自学教程(一)引言 HMM 自学教程(二)生成模型 HMM 自学教程(三)隐藏模式 HMM 自学教程(四)隐马…
这是一个非常重要的模型,凡是学统计学.机器学习.数据挖掘的人都应该彻底搞懂. python包: hmmlearn 0.2.0 https://github.com/hmmlearn/hmmlearn 参考链接: 一文搞懂HMM(隐马尔可夫模型) 如何用简单易懂的例子解释隐马尔可夫模型? - 知乎 有些文章里面已经介绍得非常清楚了,只是需要在项目中进行实践,然后做一下总结. 数学之美里有一章专门讲了隐含马尔科夫模型,讲得非常的通俗易懂. 在自然语言处理方面得到了广泛的应用,此外还有语音识别,机器翻…
定义隐马尔科夫模型可以用一个三元组(π,A,B)来定义:π 表示初始状态概率的向量A =(aij)(隐藏状态的)转移矩阵 P(Xit|Xj(t-1)) t-1时刻是j而t时刻是i的概率B =(bij)混淆矩阵 P(Yi|Xj) 在某个时刻因隐藏状态为Xj而观察状态为Yi的概率值得注意的是,在状态转移矩阵中的每个概率都是时间无关的,也就是说我们假设这个概率是固定的,不随时间变化.当然,这是马尔科夫模型最不切合实际的一个假设. 隐马尔科夫模型的使用如果一个模型可以被描述成一个隐马尔科夫模型,有三个问…