题目链接 传送门 思路 由\(a\bigoplus b=c\rightarrow a=c\bigoplus b\)得原式可化为\(x\bigoplus 2x=3x\). 又异或是不进位加法,且\(2x=1<<x,3x=(1<<x)+x\),因此可知\((x\&2x)=0\),也就是说\(x\)的二进制中没有相邻的\(1\). 第一问就可以用数位\(DP\)来写. 对于第二问我们可以考虑递推式,我们定义\(f(x)\)表示\(2^x\)时满足等式的数的个数,则 如果第\(n\…
Description bzoj2323 Solution 题目看起来非常复杂. 本质不同的细胞这个条件显然太啰嗦, 是否有些可以挖掘的性质? 1.发现,只要第一次分裂不同,那么互相之间一定是不同的(即使总数目相同). 所以先考虑第一次分裂后,一个固定小球体数量的情况: 2.第一次分裂后,最后的小球体数量固定.想要方案数不同,必须连接方式不同. 可以列出dp式子,f[n](以n结尾砍一刀)=f[n-2]+f[n-3]+...+f[2]+f[0],而f[0]=1,f[1]=0 而fibo[n]-1…
斐波那契数列:1, 1, 2, 3, 5, 8, 13,...,即 f(n) = f(n-1) + f(n-2). 求第n个数的值. 方法一:迭代 public static int iterativeFibonacci(int n) { //简单迭代 int a = 1, b = 1; for(int i = 2; i < n; i ++) { int tmp = a + b; a = b; b = tmp; } return b; } 方法二:简单递归 public static long…
斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩阵\(B\)得到\(k\times k\)的矩阵,其中第\(i\)列第\(j\)行的数就是\(A\)的第\(i\)行所有数与\(B\)的第\(j​\)列分别相乘再相加 考虑使用矩阵乘法优化DP,为了最后得到\(f(n)​\),我们设矩阵\(\text{base}​\),使\(\begin{bmatr…
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=2041 题目分析:题目是真的水,不难发现规律涉及斐波那契数列,就直接上代码吧. 代码如下: #include <iostream> #include <cstring> using namespace std; int t, n, num[40]; int dp(int n) { if (n == 1 || n == 2) return num[n] = n; if (num[n] !=…
一 . 斐波那契数列:1,1,2,3,5,8,13,21 即后一项是前两项的和. class Solution { private: ]; public: Solution() { memset(arry, , )); arry[] = arry[] = ; ; i <= ; i ++) arry[i] = arry[i - ] + arry[i - ]; } int Fibonacci(int n) { return arry[n]; } }; 递归方式: int Fibonacci(int…
题目链接: Problem B Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others) Problem Description     度熊面前有一个全是由1构成的字符串,被称为全1序列.你可以合并任意相邻的两个1,从而形成一个新的序列.对于给定的一个全1序列,请计算根据以上方法,可以构成多少种不同的序列.   Input   这里包括多组测试数据,每组测试数据包含一个正整数N,代表…
http://acm.tju.edu.cn/toj/showp3267.html3267.   Library Time Limit: 1.0 Seconds   Memory Limit: 65536KTotal Runs: 214   Accepted Runs: 96 Description As we all know, there are very long stairs before our library in campus III of our school. It is so…
题目链接 luoguP4000 斐波那契数列 题解 根据这个东西 https://www.cnblogs.com/sssy/p/9418732.html 我们可以找出%p意义下的循环节 然后就可以做了 人傻,自带,大,常数 代码 #include<bits/stdc++.h> using namespace std; #define LL long long const LL maxn = 1000007; LL dp[maxn * 10]; LL prime[maxn],s = 0; boo…
Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina.com 算法 递归 迭代 动态规划 斐波那契数列 MD 目录 目录递归和迭代什么是递归什么是迭代法递归和迭代的区别动态规划基本思想适用条件斐波那契数列递归法实现迭代法实现动态规划实现 递归和迭代 什么是递归 递归的基本概念:程序调用自身的编程技巧称为递归 一个函数在其定义中直接或间接调用自身的一种…
题意:我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘.对于这个棋盘,一共有多少种不同的覆盖方法呢? 思路:这是斐波那契数列啊,f[n] = f[n-1] + f[n-2],初始时 f[0]=1,f[1]=1,f[2]=2.其实跟下面的递推思路差不多吧.但是关于这种简单,一般都可以用矩阵快速幂解决,即O(logn)时间内解决.主要难点是构造初始矩阵,如果是后面一个数字是由卡面两个数字相加而成的,那么一般可构造一个2*2的01矩阵,才这么小,随便试试吧,只要乘完的结果第二位是答案即可…
题目地址 https://www.acwing.com/solution/acwing/content/2896/ 题目描述输入一个整数 n ,求斐波那契数列的第 n 项. 假定从0开始,第0项为0.(n<=39) 样例 输入整数 n= 返回 算法1动态规划入门题目状态转移dp[n] = dp[n-1] + dp[n-2]使用全局变量避免重复计算 代码 class Solution { public: ] = { }; int Fibonacci(int n) { ) ; || n ==) {…
题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 有多种方法,简单的循环.递归.动态规划: class Solution01 { public: int Fibonacci(int n) { , b = , c; ; i <= n; ++i) { c = a + b; a = b; b = c; } ? : b; } }; class Solution02 { public: int Fibonacci(int n)…
#include<bits/stdc++.h> using namespace std; ]; ]; ; int main() { dp[] = ; scanf(); ); ; i<=N; ++i) { if(s[i] == 'm' || s[i] == 'w') { puts("); ; } dp[i] = dp[i-]; &&(s[i] == ]==]=='u')) dp[i] = (dp[i-]+dp[i-])%MOD; } printf("%d…
题目 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项.斐波那契数列的定义如下: F(0) = 0,   F(1) = 1 F(N) = F(N - 1) + F(N - 2), 其中 N > 1. 斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出. 答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1. 示例 1: 输入:n = 2 输出:1 示例 2: 输入:n = 5 输出:5 提示: 0…
题目链接 题意 : 求斐波那契数列第n项 很简单一道题, 写它是因为想水一篇博客 勾起了我的回忆 首先, 求斐波那契数列, 一定 不 要 用 递归 ! 依稀记得当年校赛, 我在第一题交了20发超时, 就是因为用了递归, 递归时大量的出入栈操作必然比循环时间来得久 这题估摸着是每个测试样例就一个数, 记忆化的优势显示不出来, 但还是要认真看题 严格要求自己 记忆化搜索 vector<int> dp; int climbStairs(int n) { if (dp.size() <= 2)…
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 个人微信公众号:负雪明烛 目录 题目描述 解题方法 递归 动态规划 日期 题目地址:https://leetcode-cn.com/problems/fei-bo-na-qi-shu-lie-lcof/ 题目描述 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即F(N)).斐波那契数列的定义如下: F(0) = 0, F(1) = 1 F(N) = F(N -…
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=2044 题目分析:其实仔细读题就会发现其中的规律, 其中:这是一个典型的斐波那契数列. 代码如下: #include <iostream> using namespace std; int t, a, b; long long num[50]; long long dp(int n) { num[1] = 1; num[2] = 2; if (n > 2) for (int i = 3; i…
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace 斐波那契数列求和 { class Program { static void Main(string[] args) { Console.WriteLine()); Console.WriteLine()); Console.WriteLine()…
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围内的非负整数,请设计一个高效算法,计算第n项F(n).第一个斐波拉契数为F() = . 给定一个非负整数,请返回斐波拉契数列的第n项,为了防止溢出,请将结果Mod . 斐波拉契数列的计算是一个非常经典的问题,对于小规模的n,很容易用递归的方式来获取,对于稍微大一点的n,为了避免递归调用的开销,可以用…
//斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var reg = n1 + n2; console.log('第'+i+'个为:'+reg); n1 = n2;n2 = reg; } //解法2:开枝散叶,递推到一开始的1或2 // //以n=8 举例 // // 8 // / \ // / \ // / \ // 7 6 // / \ /\ // / \…
一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时候,大多都会用Fibonacci作为例子,因此我们会对这种解法烂熟于心: public static long FibonacciRecursively(uint n) { ) { ; } ) { ; } ) + FibonacciRecursively(n - ); } 上述递归的解法有很严重的效…
斐波那契数列: 1,1,2,3,5,8,13,21,34,....     //求斐波那契数列第n项的值 //1,1,2,3,5,8,13,21,34... //1.递归: //缺点:当n过大时,递归深度过深,速度降低 int fib1(int n){ if (n == 1 || n == 2) return 1; return fib1(n - 1) + fib1(n - 2); } //2.非递归: 时间复杂度O(n) int fib2(int n){ if (n == 1 || n ==…
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请你求出 f(n) mod 1000000007 的值. 输入输出格式 输入格式: ·第 1 行:一个整数 n 输出格式: 第 1 行: f(n) mod 1000000007 的值 输入输出样例 输入样例#1: 5 输出样例#1: 5 输入样例#2: 10 输出样例#2: 55 说明…
递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可以看出:fact(n) = n! = 1 * 2 * 3 * ... * (n-1) * n = (n-1)! * n = fact(n-1) * n所以,fact(n)可以表示为 n * fact(n-1),只有n=1时需要特殊处理.于是,fact(n)用递归的方式写出来就是: def fact(…
java编程基础--斐波那契数列 问题描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路:可能出现的情况:(1) n=1 ,一种方法 ;(2)n=2,两种方法;(3)对于第n阶,只能从第n-1阶或者n-2阶跳上,所以得出结论: | 1, (n=1) f(n) =     | 2, (n=2) | f(n-1)+f(n-2) ,(n>2,n为整数) public static void main(String[] args) { int a =2…
对于JS初学者来说,斐波那契数列一直是个头疼的问题,总是理不清思路. 希望看完这篇文章之后会对你有帮助. 什么是斐波那契数列 : 答: 斐波那契数列,又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为"兔子数列".  指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.-- 题目:有个人想知道,一年之内一对兔子能繁殖多少对?于是就筑了一道围墙把一对兔子关在里面.已知一对兔子每个月可以生一对小兔子,而一对…
斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n) { int preNum = 1; int prePreNum = 0; int result = 0; if(n ==0){ return 0; } if(n == 1){ return 1; } for(int i = 2; i <= n; i ++){ result = preNum +…
看到公司的笔试题中有一道题让写斐波那契数列,自己忙里偷闲写了一下 什么是斐波那契数列:斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368这个数列从第二项开始,每一项都等于前两项之和. 特别指出:第0项是0,第1项是第一个1. 注:此时a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3,n∈N*)…
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci),生于公元1170年,卒于1250年,籍贯是比萨.他被人称作“比萨的列昂纳多”.1202年,他撰写了<算盘全书>(Liber Abacci)一书.他是第一个研究了…