Hanlp中使用纯JAVA实现CRF分词】的更多相关文章

Hanlp中使用纯JAVA实现CRF分词 与基于隐马尔可夫模型的最短路径分词.N-最短路径分词相比,基于条件随机场(CRF)的分词对未登录词有更好的支持.本文(HanLP)使用纯Java实现CRF模型的读取与维特比后向解码,内部特征函数采用 双数组Trie树(DoubleArrayTrie)储存,得到了一个高性能的中文分词器. 开源项目 本文代码已集成到HanLP中开源:http://hanlp.com/ CRF简介 CRF是序列标注场景中常用的模型,比HMM能利用更多的特征,比MEMM更能抵抗…
与基于隐马尔可夫模型的最短路径分词.N-最短路径分词相比,基于随机条件场(CRF)的分词对未登录词有更好的支持.本文(HanLP)使用纯Java实现CRF模型的读取与维特比后向解码,内部特征函数采用 双数组Trie树(DoubleArrayTrie)储存,得到了一个高性能的中文分词器. CRF简介 CRF是序列标注场景中常用的模型,比HMM能利用更多的特征,比MEMM更能抵抗标记偏置的问题. CRF训练 这类耗时的任务,还是交给了用C++实现的CRF++.关于CRF++输出的CRF模型,请参考<…
/** * 从字符串中提取纯数字 * @param str * @return */ public static String getNumeric(String str) { String regEx="[^0-9]"; Pattern p = Pattern.compile(regEx); Matcher m = p.matcher(str); return m.replaceAll("").trim(); }…
本文的目标有两个: 1.学会使用11大Java开源中文分词器 2.对比分析11大Java开源中文分词器的分词效果 本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断. 11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口: ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 /**  * 获取文本的所有分词结果, 对比不同分…
本文的目标有两个: 1.学会使用11大Java开源中文分词器 2.对比分析11大Java开源中文分词器的分词效果 本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断. 11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口: /** * 获取文本的所有分词结果, 对比不同分词器结果 * @author 杨尚川 */ public interface WordSegmenter {…
HanLP中人名识别分析 在看源码之前,先看几遍论文<基于角色标注的中国人名自动识别研究> 关于命名识别的一些问题,可参考下列一些issue: 名字识别的问题 #387 机构名识别错误 关于层叠HMM中文实体识别的过程 HanLP参考博客: 词性标注 层叠HMM-Viterbi角色标注模型下的机构名识别 分词 在HMM与分词.词性标注.命名实体识别中说: 分词:给定一个字的序列,找出最可能的标签序列(断句符号:[词尾]或[非词尾]构成的序列).结巴分词目前就是利用BMES标签来分词的,B(开头…
HanLP中人名识别分析详解 在看源码之前,先看几遍论文<基于角色标注的中国人名自动识别研究> 关于命名识别的一些问题,可参考下列一些issue: l ·名字识别的问题 #387 l ·机构名识别错误 l ·关于层叠HMM中文实体识别的过程 HanLP参考博客: 词性标注 层叠HMM-Viterbi角色标注模型下的机构名识别 分词 在HMM与分词.词性标注.命名实体识别中说: 分词:给定一个字的序列,找出最可能的标签序列(断句符号:[词尾]或[非词尾]构成的序列).结巴分词目前就是利用BMES…
在看源码之前,先看几遍论文<基于角色标注的中国人名自动识别研究> 关于命名识别的一些问题,可参考下列一些issue: u u名字识别的问题 #387 u u机构名识别错误 u u关于层叠HMM中文实体识别的过程 HanLP参考博客: 词性标注 层叠HMM-Viterbi角色标注模型下的机构名识别 分词 在HMM与分词.词性标注.命名实体识别中说: 分词:给定一个字的序列,找出最可能的标签序列(断句符号:[词尾]或[非词尾]构成的序列).结巴分词目前就是利用BMES标签来分词的,B(开头),M(…
自然语言处理在大数据以及近年来大火的人工智能方面都有着非同寻常的意义.那么,什么是自然语言处理呢?在没有接触到大数据这方面的时候,也只是以前在学习计算机方面知识时听说过自然语言处理.书本上对于自然语言处理的定义或者是描述太多专业化.换一个通俗的说法,自然语言处理就是把我们人类的语言通过一些方式或者技术翻译成机器可以读懂的语言. 人类的语言太多,计算机技术起源于外国,所以一直以来自然语言处理基本都是围绕英语的.中文自然语言处理当然就是将我们的中文翻译成机器可以识别读懂的指令.中文的博大精深相信每一…
一般情况下,我们会在web.xml下配置好Spring和SpringMVC,并指定好它们的配置文件 是最常用的也是最方便的方法 例如: web.xml <!-- The definition of the Root Spring Container shared by all Servlets and Filters --> <context-param> <param-name>contextConfigLocation</param-name> <…