[Model] GoogLeNet】的更多相关文章

主要就是对Inception Module的理解 网络结构分析 没有densy layer竟然,这是给手机上运行做铺垫么. 一个新型的模块设计: [不同类型的layer并行放在了一起] 最初的设计: 对上图做以下说明: 1 . 采用不同大小的卷积核意味着不同大小的感受野,最后拼接意味着不同尺度特征的融合: 2 . 之所以卷积核大小采用1.3和5,主要是为了方便对齐.因为设定卷积步长stride=1之后,只要分别设定pad=0.1.2,那么卷积之后便可以得到相同维度的特征,然后这些特征就可以直接拼…
前面讲了LeNet.AlexNet和Vgg,这周来讲讲GoogLeNet.GoogLeNet是由google的Christian Szegedy等人在2014年的论文<Going Deeper with Convolutions>提出,其最大的亮点是提出一种叫Inception的结构,以此为基础构建GoogLeNet,并在当年的ImageNet分类和检测任务中获得第一,ps:GoogLeNet的取名是为了向YannLeCun的LeNet系列致敬. 关于深度网络的一些思考 在本系列最开始的几篇文…
import tensorflow as tf from tensorflow.contrib.slim import nets slim = tf.contrib.slim import numpy as np /root/anaconda3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to…
1.文章原文地址 Going deeper with convolutions 2.文章摘要 我们提出了一种代号为Inception的深度卷积神经网络,它在ILSVRC2014的分类和检测任务上都取得当前最佳成绩.这种结构的主要特点是提高了网络内部计算资源的利用率.这是通过精心的设计实现的,它允许增加网络的深度和宽度,同时保持计算预算不变.为了提高效果,这个网络的架构确定是基于Hebbian原则和多尺度处理的直觉.其中一个典型的实例用于提交到ILSVRC2014上,我们称之为GoogLeNet,…
Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯   徐亦达老板 Dirichlet Process 学习目标:Dirichlet Process, HDP, HDP-HMM, IBP, CRM Alex Kendall Geometry and Uncertainty in Deep Learning for Computer Vision 语义分割 colah's blog Feature Visu…
Spring Boot 入门 Spring Boot 简介 > 简化Spring应用开发的一个框架:> 整个Spring技术栈的一个大整合:> J2EE开发的一站式解决方案: 微服务 2014,martin fowler 微服务:架构风格(服务微化) 一个应用应该是一组小型服务:可以通过HTTP的方式进行互通: 单体应用:ALL IN ONE 微服务:每一个功能元素最终都是一个可独立替换和独立升级的软件单元: [详细参照微服务文档](https://martinfowler.com/ar…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…
转自:http://blog.csdn.net/liumaolincycle/article/details/50471289#t0 综述: http://blog.csdn.net/sunbaigui/article/details/50807362 googlenet和vgg是2014年imagenet竞赛的双雄,这两类模型结构有一个共同特点是go deeper.跟vgg不同的是,googlenet做了更大胆的网络上的尝试而不是像vgg继承了lenet以及alexnet的一些框架,该模型虽然…
Rethinking the Inception Architecture for Computer Vision 论文地址:https://arxiv.org/abs/1512.00567 Abstract 介绍了卷积网络在计算机视觉任务中state-of-the-art.分析现在现状,本文通过适当增加计算条件下,通过suitably factorized convolutions 和 aggressive regularization来扩大网络.并说明了取得的成果. 1. Introduct…
上一篇使用caffenet的模型微调.但由于caffenet有220M太大,測试速度太慢.因此换为googlenet. 1. 训练 迭代了2800次时死机,大概20分钟. 使用的是2000次的模型. 2. 測试 2.1 測试批处理 在F:\caffe-master170309新建例如以下图文件test-TrafficJamBigData03292057.bat. .\Build\x64\Debug\caffe.exe test --model=models/bvlc_googlenet0329_…