题目描述 火车从始发站(称为第1站)开出,在始发站上车的人数为a,然后到达第2站,在第2站有人上.下车,但上.下车的人数相同,因此在第2站开出时(即在到达第3站之前)车上的人数保持为a人.从第3站起(包括第3站)上.下车的人数有一定规律:上车的人数都是前两站上车人数之和,而下车人数等于上一站上车人数,一直到终点站的前一站(第n-1站),都满足此规律.现给出的条件是:共有N个车站,始发站上车的人数为a,最后一站下车的人数是m(全部下车).试问x站开出时车上的人数是多少? 输入输出格式 输入格式:…
题目描述 若一个数(首位不为零)从左向右读与从右向左读都一样,我们就将其称之为回文数. 例如:给定一个10进制数56,将56加65(即把56从右向左读),得到121是一个回文数. 又如:对于10进制数87: STEP1:87+78 = 165 STEP2:165+561 = 726 STEP3:726+627 = 1353 STEP4:1353+3531 = 4884 在这里的一步是指进行了一次N进制的加法,上例最少用了4步得到回文数4884. 写一个程序,给定一个N(2<=N<=10,N=1…
题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … 3/1 3/2 3/3 … 4/1 4/2 … 5/1 … … 我们以Z字形给上表的每一项编号.第一项是1/1,然后是1/2,2/1,3/1,2/2,… 输入输出格式 输入格式: 整数N(1≤N≤10000000) 输出格式: 表中的第N项 输入输出样例 输入样例#1: 7 输出样例#1: 1/4…
题目描述 设有n个正整数(n≤20),将它们联接成一排,组成一个最大的多位整数. 例如:n=3时,3个整数13,312,343联接成的最大整数为:34331213 又如:n=4时,4个整数7,13,4,246联接成的最大整数为:7424613 输入输出格式 输入格式: 第一行,一个正整数n. 第二行,n个正整数. 输出格式: 一个正整数,表示最大的整数 输入输出样例 输入样例#1: 3 13 312 343 输出样例#1: 34331213 代码 #include<iostream> #inc…
题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上:在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上:其他堆上取的纸牌,可以移到相邻左边或右边的堆上. 现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多. 例如 N=4,4 堆纸牌数分别为: ①9②8③17④6 移动3次可达到目的: 从 ③ 取 4 张牌放到 ④ (9…
P1011 车站 题目描述 火车从始发站(称为第1站)开出,在始发站上车的人数为a,然后到达第2站,在第2站有人上.下车,但上.下车的人数相同,因此在第2站开出时(即在到达第3站之前)车上的人数保持为a人.从第3站起(包括第3站)上.下车的人数有一定规律:上车的人数都是前两站上车人数之和,而下车人数等于上一站上车人数,一直到终点站的前一站(第n-1站),都满足此规律.现给出的条件是:共有N个车站,始发站上车的人数为a,最后一站下车的人数是m(全部下车).试问x站开出时车上的人数是多少? 输入输出…
2021.07.26 P1011 车站(斐波那契数列) [P1011 NOIP1998 提高组] 车站 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.改变形式的斐波那契数列. 题意: 第一站只上人,第二站上下车人数一样多,第三站到第(n-1)站上车人数是前两站之和,下车人数与前一站上车人数相同. 分析: 设第一站上x1人,第二站上x2人. \[第一站:上:x1:下:0,净上:x1 \\ 第二站:上:x2:下:x2:净上:0 \\ 第三站:上:x1+x2:下:x2:…
P1011 车站 题目描述 火车从始发站(称为第1站)开出,在始发站上车的人数为a,然后到达第2站,在第2站有人上.下车,但上.下车的人数相同,因此在第2站开出时(即在到达第3站之前)车上的人数保持为a人.从第3站起(包括第3站)上.下车的人数有一定规律:上车的人数都是前两站上车人数之和,而下车人数等于上一站上车人数,一直到终点站的前一站(第n-1站),都满足此规律.现给出的条件是:共有N个车站,始发站上车的人数为a,最后一站下车的人数是m(全部下车).试问x站开出时车上的人数是多少? 输入输出…
题目描述 火车从始发站(称为第1站)开出,在始发站上车的人数为a,然后到达第2站,在第2站有人上.下车,但上.下车的人数相同,因此在第2站开出时(即在到达第3站之前)车上的人数保持为a人.从第3站起(包括第3站)上.下车的人数有一定规律:上车的人数都是前两站上车人数之和,而下车人数等于上一站上车人数,一直到终点站的前一站(第n-1站),都满足此规律.现给出的条件是:共有N个车站,始发站上车的人数为a,最后一站下车的人数是m(全部下车).试问x站开出时车上的人数是多少? 输入输出格式 输入格式:…
题目描述 火车从始发站(称为第1站)开出,在始发站上车的人数为a,然后到达第2站,在第2站有人上.下车,但上.下车的人数相同,因此在第2站开出时(即在到达第3站之前)车上的人数保持为a人.从第3站起(包括第3站)上.下车的人数有一定规律:上车的人数都是前两站上车人数之和,而下车人数等于上一站上车人数,一直到终点站的前一站(第n-1站),都满足此规律.现给出的条件是:共有N个车站,始发站上车的人数为a,最后一站下车的人数是m(全部下车).试问x站开出时车上的人数是多少? 输入输出格式 输入格式:…