CVPR2021 | 重新思考BatchNorm中的Batch】的更多相关文章

​ 前言 公众号在前面发过三篇分别对BatchNorm解读.分析和总结的文章(文章链接在文末),阅读过这三篇文章的读者对BatchNorm和归一化方法应该已经有了较深的认识和理解.在本文将介绍一篇关于BatchNorm举足轻重的论文,这篇论文对进行了很多实验,非常全面地考虑了BatchNorm中的Batch. 欢迎关注公众号 CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. Motivation BatchNorm 区别于其他深度学习算子的关键因素是它对批量数据而不是单个…
Pytorch中的BatchNorm的API主要有: 1 torch.nn.BatchNorm1d(num_features, 2 3 eps=1e-05, 4 5 momentum=0.1, 6 7 affine=True, 8 9 track_running_stats=True) 一般来说pytorch中的模型都是继承nn.Module类的,都有一个属性trainning指定是否是训练状态,训练状态与否将会影响到某些层的参数是否是固定的,比如BN层或者Dropout层.通常用model.t…
之前一直和小伙伴探讨batch normalization层的实现机理,作用在这里不谈,知乎上有一篇paper在讲这个,链接 这里只探究其具体运算过程,我们假设在网络中间经过某些卷积操作之后的输出的feature map的尺寸为4×3×2×2 4为batch的大小,3为channel的数目,2×2为feature map的长宽 整个BN层的运算过程如下图 上图中,batch size一共是4, 对于每一个batch的feature map的size是3×2×2 对于所有batch中的同一个cha…
一文读懂神经网络训练中的Batch Size,Epoch,Iteration 作为在各种神经网络训练时都无法避免的几个名词,本文将全面解析他们的含义和关系. 1. Batch Size 释义:批大小,即单次训练使用的样本数 为什么需要有 Batch_Size :batch size 的正确选择是为了在内存效率和内存容量之间寻找最佳平衡. Batch size调参经验总结: 相对于正常数据集,如果Batch_Size过小,训练数据就会非常难收敛,从而导致underfitting. 增大Batch_…
在jdbc2.0里添加了批量处理的功能(batch),其同意将多个sql语句作为一个单元送至数据库去运行,这样做能够提高操作效率.在操作大量的数据时, ORM框架实现批量是非常慢的.我们能够使用jdbc提供的Batch来提高效率. 演示样例: 首先是使用for循环,一句一句的运行: public class TestCommon { static long startTime; public static void main(String[] args) throws Exception { C…
本期内容 : BatchDuration与 Process Time 动态Batch Size Spark Streaming中有很多算子,是否每一个算子都是预期中的类似线性规律的时间消耗呢? 例如:join操作和普通Map操作的处理数据的时间消耗是否会呈现出一致的线性规律呢,也就是说,并非数据量规模越大就是简单加大BatchDuration 就可以解决问题的,数据量是一个方面,计算的算子也是一个考量的因素. 使用BatchSize来适配我们的流处理程序 : 线上的处理程序越来越重要,流入的数据…
问题 训练神经网络是一个很复杂的过程,在前面提到了深度学习中常用的激活函数,例如ELU或者Relu的变体能够在开始训练的时候很大程度上减少梯度消失或者爆炸问题.但是却不能保证在训练过程中不出现该问题,例如在训练过程中每一层输入数据分布发生了改变我们就需要使用更小的learning rate去训练,这一现象被成为internal covariate shift,Batch Normalization能够很好的解决这一问题.目前该算法已经被广泛应用在深度学习模型中,该算法的强大至于在于: 可以选择一…
问题 训练神经网络是一个很复杂的过程,在前面提到了深度学习中常用的激活函数,例如ELU或者Relu的变体能够在开始训练的时候很大程度上减少梯度消失或者爆炸问题,但是却不能保证在训练过程中不出现该问题,例如在训练过程中每一层输入数据分布发生了改变了,那么我们就需要使用更小的learning rate去训练,这一现象被称为internal covariate shift,Batch Normalization能够很好的解决这一问题.目前该算法已经被广泛应用在深度学习模型中,该算法的强大至于在于: 可…
Batch_size参数的作用:决定了下降的方向 极端一: batch_size为全数据集(Full Batch Learning): 好处: 1.由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向. 2.由于不同权重的梯度值差别巨大,因此选择一个全局的学习率很困难.Full Batch Learning可以使用Rprop只基于梯度符号并且针对性单独更新各权值. 坏处: 1.随着数据集的海量增长和内存限制,一次性载入所有的数据进来变得越来越不可行. 2.以Rprop的方式…
在深度学习中为了提高训练速度,经常会使用一些正正则化方法,如L2.dropout,后来Sergey Ioffe 等人提出Batch Normalization方法,可以防止数据分布的变化,影响神经网络需要重新学习分布带来的影响,会降低学习速率,训练时间等问题.提出使用batch normalization方法,使输入数据分布规律保持一致.实验证明可以提升训练速度,提高识别精度.下面讲解一下在Tensorflow中如何使用Batch Normalization 有关Batch Normalizat…