SLAM相机定位】的更多相关文章

SLAM相机定位 摘要 深度学习在相机定位方面取得了很好的结果,但是当前的单幅图像定位技术通常会缺乏鲁棒性,从而导致较大的离群值.在某种程度上,这已通过序列的(多图像)或几何约束方法解决,这些方法可以学习拒绝动态对象和光照条件以获得更好的性能.在这项工作中,我们显示出注意力可以用来迫使网络专注于几何上更鲁棒的对象和特征,即使仅使用单个图像作为输入,也可以在通用基准中实现最新的性能.通过公共室内和室外数据集提供了广泛的实验证据.通过显著性图的可视化,我们展示了网络如何学习拒绝动态对象,从而产生好的…
Slam即时定位与地图构建 技术解释 同步定位与地图构建(SLAM或Simultaneous localization and mapping)是一种概念:希望机器人从未知环境的未知地点出发,在运动过程中通过重复观测到的地图特征(比如,墙角,柱子等)定位自身位置和姿态,再根据自身位置增量式的构建地图,从而达到同时定位和地图构建的目的. 使用情景 一个由德国达姆施塔特理工大学研发的机器人正使用激光成像探测与测距技术来给迷宫绘图. 上图的机器人描绘出的地图. 操作性定义 这里说的地图,是用来在环境中…
上一篇文章<从零开始一起学习SLAM | 为啥需要李群与李代数?>以小白和师兄的对话展开,受到了很多读者的好评.本文继续采用对话的方式来学习一下相机成像模型,这个是SLAM中极其重要的内容,必须得掌握哦~ 小白:师兄,上次听你讲了李群李代数,有种“听君一席话胜读十年书”的赶脚~后来看书感觉容易理解多了呢!师兄:是吗?那太好啦,给你讲的过程也加深了我的理解呢小白:那师兄今天要不要继续加深理解一下相机成像模型 的部分呢?师兄:额..好啊(感觉被套路了,不过想想上次小白师妹请客吃了烧烤呢)小白:讲完…
SLAM 即时定位与地图构建SLAM(Simultaneous Localization and Mapping) 参考链接: 视觉SLAM漫谈,http://www.cnblogs.com/gaoxiang12/p/3695962.html…
博客转载自:https://blog.csdn.net/u010821666/article/details/78793225 原文标题:深度学习结合SLAM的研究思路/成果整理之 1. 深度学习跟SLAM的结合点 深度学习和slam的结合是近几年比较热的一个研究方向,具体的研究方向,我简单分为三块,如下. 1.1 深度学习结合SLAM的三个方向 用深度学习方法替换传统SLAM中的一个/几个模块 特征提取,特征匹配,提高特征点稳定性,提取点线面等不同层级的特征点. 深度估计 位姿估计 重定位 其…
点击"计算机视觉life"关注,置顶更快接收消息! 本文由作者刘骁授权发布,转载请联系原作者,个人主页http://www.liuxiao.org 目前 Semantic SLAM (注意不是 Semantic Mapping)工作还比较初步,可能很多思路还没有打开,但可以预见未来几年工作会越来越多.语义 SLAM 的难点在于怎样设计误差函数,将 Deep Learning 的检测或者分割结果作为一个观测,融入 SLAM 的优化问题中一起联合优化,同时还要尽可能做到至少 GPU 实时.…
由于显示格式问题,建议阅读原文:如何从零开始系统化学习视觉SLAM? 什么是SLAM? SLAM是 Simultaneous Localization And Mapping的 英文首字母组合,一般翻译为:同时定位与建图.同时定位与地图构建.虽然听起来比较拗口,但SLAM却是三维视觉的核心技术,广泛应用于AR.自动驾驶.智能机器人.无人机等前沿热门领域.可以说凡是具有一定行动能力的智能体都拥有某种形式的SLAM系统.关于SLAM的具体应用场景介绍可以看<SLAM有什么用?> SLAM是计算机视…
点击公众号"计算机视觉life"关注,置顶星标更快接收消息! 本文阅读时间约5分钟 对于小白来说,初入一个领域时最应该了解的当然是这个领域的研究现状啦.只有知道这个领域大家现在正在干什么,才能知道自己应该做什么.关注领域内的大牛以及领域内比较著名的实验室,紧跟大牛的脚步,才能走在科研的最前沿.今天CV_life君就帮各位整理了一些现阶段国内外SLAM的著名实验室,大牛以及研究成果,还会附带大牛们的代表性论文,开源代码,以及常用的数据集网址,小白们如果喜欢的话记得分享给朋友哦~ 话不多说…
对VSLAM和三维重建感兴趣的在计算机视觉life"公众号菜单栏回复"三维视觉"进交流群. 小白:师兄,上次你讲了点云拼接后,我回去费了不少时间研究,终于得到了和你给的参考结果差不多的点云,不过,这个点云"可远观而不可近看",放大了看就只有一个个稀疏的点了.究竟它能干什么呢? 师兄:这个问题嘛...基本就和SLAM的作用一样,定位和建图 小白:定位好理解,可是师兄说建图,这么稀疏的地图有什么用呢? 师兄:地图分很多种,稀疏的,稠密的,还有半稀疏的等,你输出…
SLAM是 Simultaneous Localization And Mapping的 英文首字母组合,一般翻译为:同时定位与建图.同时定位与地图构建. 「同时定位与地图构建」这几个词,乍一听起来非常拗口,为了不在一开始就吓跑读者,我们先不对其进行专业的解释,用一个日常生活中形象的例子来进行说明. 初 步 认 识 S L A M 我们知道现在有不少家用的扫地机器人,可以代替人对室内进行自动清扫.早期的扫地机器人并不智能,它只是具有简单的避障功能,在室内随机游走,遇到障碍物就转弯,这样会导致有很…
[1]陈卫东, 张飞. 移动机器人的同步自定位与地图创建研究进展[J]. 控制理论与应用, 2005, 22(3):455-460. [2]Cadena C, Carlone L, Carrillo H, et al. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age[J]. IEEE Transactions on Robotics, 2016…
SLAM是Simultaneous localization and mapping缩写,意为“同步定位与建图”,主要用于解决机器人在未知环境运动时的定位与地图构建问题,为了让大家更多的了解SLAM,以下将从SLAM的应用领域.SLAM框架.SLAM分类(基于传感器的SLAM分类)来进行全面阐述,本文仅对没有接触过SLAM的新人进行的科普. 一.SLAM的典型应用领域 机器人定位导航领域:地图建模.SLAM可以辅助机器人执行路径规划.自主探索.导航等任务.国内的科沃斯.塔米以及最新面世的岚豹扫地…
参考英文维基:https://en.wikipedia.org/wiki/Slam 参考文档:视觉slam研究分析的一点认识 1. 请简单描述您对机器人的SLAM的概念理解? 答: 机器人需要在自身位置不确定的条件下,在完全未知环境中创建地图, 同时利用地图进行自主定位和导航.这就是移动机器人的同时定位与地图创建(simultaneous localization and mapping (SLAM)  ) 问题. 算法上一般分为 相机定位跟踪 和 场景地图构建 两个高度相关的部分.场景地图构建…
计算机视觉life为读者整理了国内几十家涉及SLAM的优秀公司,涵盖自动驾驶.仓储机器人.服务机器人.无人机.AR.芯片相机等领域. 一 自动/辅助驾驶: 1.百度: 主要产品:自动驾驶软件 百度智能汽车开启未来之路.基于SD地图.ADAS地图.高精地图.人工智能.大数据, 向国内外车企提供自动驾驶系统解决方案和HMI人机交互平台:与车企.Tier1厂商.芯片厂商以及服务提供商等共同打造智慧汽车新生态自动驾驶软件服务自动驾驶软件服务,是面向汽车企业提供包括感知.自定位和决策在内的应用级自动驾驶辅…
本文作者 沈玥伶,公众号:计算机视觉life,编辑部成员 一.相机与IMU的融合 在SLAM的众多传感器解决方案中,相机与IMU的融合被认为具有很大的潜力实现低成本且高精度的定位与建图.这是因为这两个传感器之间具有互补性:相机在快速运动.光照改变等情况下容易失效.而IMU能够高频地获得机器人内部的运动信息,并且不受周围环境的影响,从而弥补相机的不足:同时,相机能够获得丰富的环境信息,通过视觉匹配完成回环检测与回环校正,从而有效地修正IMU的累计漂移误差. 二.什么是相机与IMU外参? 足够准确的…
本文作者任旭倩,公众号:计算机视觉life成员,由于格式原因,公式显示可能出问题,建议阅读原文链接:综述 | SLAM回环检测方法 在视觉SLAM问题中,位姿的估计往往是一个递推的过程,即由上一帧位姿解算当前帧位姿,因此其中的误差便这样一帧一帧的传递下去,也就是我们所说的累积误差.一个消除误差有效的办法是进行回环检测.回环检测判断机器人是否回到了先前经过的位置,如果检测到回环,它会把信息传递给后端进行优化处理.回环是一个比后端更加紧凑.准确的约束,这一约束条件可以形成一个拓扑一致的轨迹地图.如果…
本文作者 任旭倩,公众号:计算机视觉life,编辑成员 欧洲 英国伦敦大学帝国理工学院 Dyson 机器人实验室 http://www.imperial.ac.uk/dyson-robotics-lab 简介: 伦敦帝国理工学院戴森机器人实验室成立于2014年,由Andrew Davison.教授领导.是戴森公司和帝国理工学院领导机器人视觉小组Andrew Davison教授的合作实验室,Andrew Davison是视觉SLAM领域的先驱,戴森提供大量的资金和支持,以建立一个机器人专家团队,他…
之前我们分享过视觉SLAM找工作.面试经历,见<2018年SLAM.三维视觉方向求职经验分享>,<经验分享 | SLAM.3D vision笔试面试问题>. 从零开始学习SLAM知识星球里,会定期发布一些常见的SLAM问题引导大家讨论,并给出参考解答.以下列举几个已经发布的问题及回答. 1.视觉SLAM方法一般分为特征点法和直接法.请简述一下特征点法和直接法的概念,以及对应的优缺点. 特征点法,根据提取.匹配 特征点来估计相机运动,优化的是重投影误差,对光照变化不敏感 ,是比较成熟…
ORB-SLAM: A Versatile and Accurate Monocular SLAM System Abstract 这篇文章提出了 ORB-SLAM,一个基于特征的单目SLAM系统,这个系统在室内和室外同样适用.该系统对严重的运动杂波(motion clutter)很稳健,允许宽基线闭环和重定位,并且包含了全自动的初始化.基于近些年的优秀的算法,我们重新设计了一个新的系统:他对所有的任务都使用了相同的特征包括跟踪.映射.重定位和循环闭环.一种选取重建过程中点和关键帧的策略有着出色…
摄像头定位:ICCV2019论文解析 SANet: Scene Agnostic Network for Camera Localization 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Yang_SANet_Scene_Agnostic_Network_for_Camera_Localization_ICCV_2019_paper.pdf The code is available at: https://githu…
SLAM的通用框架:GSLAM GSLAM: A General SLAM Framework and Benchmark 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Zhao_GSLAM_A_General_SLAM_Framework_and_Benchmark_ICCV_2019_paper.pdf 摘要 SLAM技术最*取得了许多成功,吸引了高科技公司的注意.然而,如何统一现有或新兴算法的接口,有效地进行速度.健…
博客转载自:https://blog.csdn.net/xiaoxiaowenqiang/article/details/81051010 原文标题:深度学习结合SLAM 语义slam 语义分割 端到端SLAM CNN-SLAM DenseSLAM orbslam2 + ssd LSD-SLAM + CNN SemanticFusion Mask 深度学习结合SLAM 研究现状总结 本文github链接 1. 用深度学习方法替换传统slam中的一个/几个模块: 特征提取,特征匹配,提高特征点稳定…
点"计算机视觉life"关注,置顶更快接收消息! 小白:师兄,g2o框架<从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码>,以及顶点<从零开始一起学习SLAM | 掌握g2o顶点编程套路>我都学完啦,今天给我讲讲g2o中的边吧!是不是也有什么套路? 师兄:嗯,g2o的边比顶点稍微复杂一些,不过前面你也了解了许多g2o的东西,有没有发现g2o的编程基本都是固定的格式(套路)呢? 小白:是的,我现在按照师兄说的g2o框架和顶点设计方法,再去看g2…
点"计算机视觉life"关注,置顶更快接收消息! ## 小白:师兄,上一次将的g2o框架<从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码>真的很清晰,我现在再去看g2o的那些优化的部分,基本都能看懂了呢! 师兄:那太好啦,以后多练习练习,加深理解 小白:嗯,我开始编程时,发现g2o的顶点和边的定义也非常复杂,光看十四讲里面,就有好几种不同的定义,完全懵圈状态...师兄,能否帮我捋捋思路啊 师兄:嗯,你说的没错,入门的时候确实感觉很乱,我最初也是花了些时间…
1.简介 本文的主要目的是简单介绍移动机器人领域中广泛应用的技术SLAM(同步定位与地图绘制)的理论基础以及应用细节.虽然目前存在很多关于SLAM技术的方方面面的论文,但是对于一个新手来说,仍然需要花费大量的时间去调研与把握SLAM发展的脉络.本文希望能够将SLAM技术在保持一些理论基础的前提下,能够按照一种简单易懂的方式呈现出现了.在阅读完本文后,读者应该可以在一个移动机器人上实现最简单使用的SLAM技术.   SLAM可以通过多种方法实现,首先其可以在多种不同的硬件上实现.其次,SLAM更像…
首发于公众号:计算机视觉life 旗下知识星球「从零开始学习SLAM」 这可能是最清晰讲解g2o代码框架的文章 理解图优化,一步步带你看懂g2o框架 小白:师兄师兄,最近我在看SLAM的优化算法,有种方法叫"图优化",以前学习算法的时候还有一个优化方法叫"凸优化",这两个不是一个东西吧? 师兄:哈哈,这个问题有意思,虽然它们中文发音一样,但是意思差别大着呢!我们来看看英文表达吧,图优化的英文是 graph optimization 或者 graph-based op…
点击公众号"计算机视觉life"关注,置顶星标更快接收消息! 本文编程练习框架及数据获取方法见文末获取方式 菜单栏点击"知识星球"查看「从零开始学习SLAM」一起学习交流 点云滤波后为什么还需要平滑? 小白:师兄,师兄,上次你说的点云滤波我学会啦,下一步怎么把点云变成网格啊? 师兄:滤波只是第一步,在网格化前我们还需要对滤波后的点云进行平滑(smoothing) 小白:不是已经滤波了吗?怎么还要平滑啊?滤波和平滑不一样吗? 师兄:确实不太一样.我们用RGB-D,激光…
本文提纲 先热热身点云是啥你知道点云优缺点吗?点云库PCL:开发者的福音PCL安装指北炒鸡简单的PCL实践留个作业再走先热热身 小白:hi,师兄,好久不见师兄:师妹好,上周单应矩阵作业做了吗?小白:嗯,做了,这个单应矩阵真的挺有意思的.作业之外,我发现了一个新技能...师兄:什么技能?小白:我发现很多网上流传的图片都可以用上次我学过的单应矩阵实现,你看这张图,我第一次看到还以为是真的 现在知道这不就是我们上节课讲的单应矩阵的变换吗?果然我在网上找到了原图 现在我也会用OpenCV里的单应函数做这…
小白最近在看文献时总是碰到一个奇怪的词叫“homography matrix”,查看了翻译,一般都称作“单应矩阵”,更迷糊了.正所谓:“每个字都认识,连在一块却不认识”就是小白的内心独白.查了一下书上的推导,总感觉有种“硬凑”的意味,于是又找到了师兄... 神奇的单应矩阵小白:师兄~单应矩阵是什么鬼啊?我看书上的推导,每一步勉强能看懂,但还是不太理解其背后的物理意义,感觉不能转化为自己理解的方式啊师兄:哦,我第一次看的时候也是这种感觉 小白:而且这个名字好绕口啊,我完全没法和它的物理意义联系起来…
自从小白向师兄学习了李群李代数和相机成像模型的基本原理后,感觉书上的内容没那么难了,公式推导也能推得动了,感觉进步神速,不过最近小白在学习对极几何,貌似又遇到了麻烦... 小白:师兄,对极几何这块你觉得重要吗?师兄:当然重要啦,这个是多视角立体视觉的核心啊 小白:那师兄一定得帮帮我讲清楚啊,最近在看书上这部分内容,感觉很难理解呢!师兄:哪里不理解?书上公式推导的挺详细了都 小白:这么说吧,公式推导我也能大概看懂,但总觉得不知道为啥这么推导,这样推导的物理意义是什么?师兄:哦哦,明白啦,就是不能转…