BP神经网络设计】的更多相关文章

尽管神经网络的研究和应用已经取得巨大成功,但在网络的开发设计方面至今仍没有一套完善的理论做指导,应用中采取的主要设计方法是,在充分了解待解决问题的基础上将经验与试探相结合,通过多次改进性试验,最终选出一个较好的设计方案.下面是在开发神经网络中常用的基本方法和实用技术. (1)  网络信息容量与训练样本数 多层神经网络的分类能力与网络信息容量相关,如果网络的权值和阈值总数nw表征网络信息容量,研究表明,训练样本数N与给定的训练误差ε之间应满足以下匹配关系: N = nw / ε. 上式表明网络的信…
1.网络层数 大部分单个隐藏层即可 2.输入层神经元个数 输入变量的个数通常都是由问题的外部描述所确定的.例如,如果有4个外部变量作为网络的输入,那么网络就有4个输入.但是,这是不是意味着输入层的神经元个数就为4呢?答案是否定的! 因为每个神经元的输入可以有无数个,所以,通常当输入变量较多的时候,输入层神经元个数是明显的少于输入变量的个数的! 3.隐藏层神经元个数 较多的隐藏层神经元个数可以带来更好的性能,但会导致训练时间增加,有这么一些经验公式... 其中h为隐藏层神经元个数,i表示输入层神经…
1.BP神经网络训练过程论述 BP网络结构有3层:输入层.隐含层.输出层,如图1所示. 图1 三层BP网络结构 3层BP神经网络学习训练过程主要由4部分组成:输入模式顺传播(输入模式由输入层经隐含层向输出层传播计算).输出误差逆传播(输出的误差由输出层经隐含层传向输入层).循环记忆训练(模式顺序传播与误差逆传播的计算过程反复交替循环进行)和学习结果判别(判定全局误差是否趋向极小值). 下面具体介绍和分析用梯度下降法训练BP神经网络,在第1次输入样品(1=1,2,--,N)进行训练时各个 参数的表…
一 题目: 71 BP神经网络的实现: 利用C++语言实现BP神经网络, 并利用BP神经网络解决螨虫分类问题: 蠓虫分类问题:对两种蠓虫(A与B)进行鉴别,依据的资料是触角和翅膀的长度,已知了9支Af和6支Apf 的数据如下:A: (1.24,1.27), (1.36,1.74),(1.38,1.64) , (1.38,1.82) , (1.38,1.90) , (1.40,1.70) , (1.48,1.82) , (1.54,1.82) ,(1.56,2.08).B: (1.14,1.82)…
将神经网络做成实时分布式架构: Storm 分布式BP神经网络:    http://bbs.csdn.net/topics/390717623 流式大数据处理的三种框架:Storm,Spark和Samza: 许多分布式计算系统都可以实时或接近实时地处理大数据流.本文将对三种Apache框架分别进行简单介绍,然后尝试快速.高度概述其异同. Apache Storm 在Storm中, 先要设计一个用于实时计算的图状结构,我们称之为拓扑(topology).这个拓扑将会被提交给集群,由集群中的主控节…
上一次我们讲了M-P模型,它实际上就是对单个神经元的一种建模,还不足以模拟人脑神经系统的功能.由这些人工神经元构建出来的网络,才能够具有学习.联想.记忆和模式识别的能力.BP网络就是一种简单的人工神经网络.我们的第二话就从BP神经网络开始漫谈吧. BP的来源 “时势造英雄”,一个伟大的人物的登场总是建立在历史的需求之下,所以我们剖析一个人,得先看看他的出身时代.同样的道理,在讲BP网络的特性和用途之前,我们需要先了解一下它的来源和诞生原因,以便理解它的重要性. 1.1 最简单的神经网络结构——感…
论文 <基于现代技术的河道浅滩演变研究> 利用BP神经网络来预测浅滩演变 BP输出因子:浅滩的年平均淤积厚度以及浅滩上最小水深,是反映浅滩变化的两个基本指标,是确定浅滩航道尺度能否满足航行要求的依据. BP输入因子的选取与浅滩形成以及影响浅滩变化的诸因素有关.从河床演变理论及河流地貌动力学角度,影响浅滩断面最小水深和浅滩的年平均淤积厚度的主要因素有:(1)上游来流量(Q).来流过程(Q一t);(2)上游来沙量(G).输沙过程(G一t),泥沙组成(ds一Ps);(3)河段比降(J);(4)河床形…
1 贝叶斯网络在地学中的应用 1 1.1基本原理及发展过程 1 1.2 具体的研究与应用 4 2 BP神经网络在地学中的应用 6 2.1BP神经网络简介 6 2.2基本原理 7 2.3 在地学中的具体应用与研究 9 结论 11 参考文献 12 1 贝叶斯网络在地学中的应用 贝叶斯网络是一种概率网络,它是基于概率推理的图形化网络,而贝叶斯公式则是这个概率网络的基础.贝叶斯网络是基于概率推理的数学模型,所谓概率推理就是通过一些变量的信息来获取其他的概率信息的过程,基于概率推理的贝叶斯网络(Bayes…
1.神经网络工具箱概述 Matlab神经网络工具箱几乎包含了现有神经网络的最新成果,神经网络工具箱模型包括感知器.线性网络.BP网络.径向基函数网络.竞争型神经网络.自组织网络和学习向量量化网络.反馈网络.本文只介绍BP神经网络工具箱. 2.BP神经网络工具箱介绍 BP神经网络学习规则是不断地调整神经网络的权值和偏值,使得网络输出的均方误差和最小.下面是关于一些BP神经网络的创建和训练的名称: (1)newff:创建一前馈BP网络(隐含层只有一层) (2)newcf:创建一多层前馈BP网络(隐含…
一. 前言: 作为AI入门小白,参考了一些文章,想记点笔记加深印象,发出来是给有需求的童鞋学习共勉,大神轻拍! [毒鸡汤]:算法这东西,读完之后的状态多半是 --> “我是谁,我在哪?” 没事的,吭哧吭哧学总能学会,毕竟还有千千万万个算法等着你. 本文货很干,堪比沙哈拉大沙漠,自己挑的文章,含着泪也要读完! ▌二. 科普: 生物上的神经元就是接收四面八方的刺激(输入),然后做出反应(输出),给它一点就灿烂.仿生嘛,于是喜欢放飞自我的 某些人 就提出了人工神经网络.一切的基础-->人工神经单元,…
如果感觉自己看不懂,那就看看我博客的梯度下降法,博文最后的感知机也算最简单的BP神经网络吧,用的也是反馈(w,b):典型梯度下降法 BP网络的结构 BP网络的结构如下图所示,分为输入层(Input),隐含层(Hidden),输出层(Output). 输入层的结点个数取决于输入的特征个数. 输出层的结点个数由分类的种类决定. 在输入层和输出层之间通常还有若干个隐含层,至于隐含层的个数以及每个隐含层的结点个数由训练工程师的经验来人为设定. 链接A曾提到由万能逼近定理,一般一个隐含层就足够了.且这个隐…
引言 在上一篇博客中,介绍了各种Python的第三方库的安装,本周将要使用Tensorflow完成第一个神经网络,BP神经网络的编写.由于之前已经介绍过了BP神经网络的内部结构,本文将直接介绍Tensorflow编程常用的一些方法. 正文 神经网络的内容 一般,一个神经网络程序包含以下几部分内容. 1.数据表达和特征提取.对于一个非深度学习神经网络,主要影响其模型准确度的因素就是数据表达和特征提取.同样的一组数据,在欧式空间和非欧空间,就会有着不同的分布.有时候换一种思考问题的思路就会使得问题变…
1.具体应用实例.根据表2,预测序号15的跳高成绩. 表2 国内男子跳高运动员各项素质指标 序号 跳高成绩() 30行进跑(s) 立定三级跳远() 助跑摸高() 助跑4—6步跳高() 负重深蹲杠铃() 杠铃半蹲系数 100 (s) 抓举 () 1 2.24 3.2 9.6 3.45 2.15 140 2.8 11.0 50 2 2.33 3.2 10.3 3.75 2.2 120 3.4 10.9 70 3 2.24 3.0 9.0 3.5 2.2 140 3.5 11.4 50 4 2.32…
神经网络的结构 神经网络的网络结构由输入层,隐含层,输出层组成.隐含层的个数+输出层的个数=神经网络的层数,也就是说神经网络的层数不包括输入层.下面是一个三层的神经网络,包含了两层隐含层,一个输出层.其中第一层隐含层的节点数为3,第二层的节点数为2,输出层的节点数为1:输入层为样本的两个特征X1,X2. 图1 三层神经网络 在神经网络中每一个节点的都与上一层的所有节点相连,称为全连接.神经网络的上一层输出的数据是下一层的输入数据.在图中的神经网络中,原始的输入数据,通过第一层隐含层的计算得出的输…
BP神经网络的手写数字识别 ANN 人工神经网络算法在实践中往往给人难以琢磨的印象,有句老话叫“出来混总是要还的”,大概是由于具有很强的非线性模拟和处理能力,因此作为代价上帝让它“黑盒”化了.作为一种general purpose的学**算法,如果你实在不想去理会其他类型算法的理论基础,那就请使用ANN吧.本文为笔者使用BP神经网络进行手写数字识别的整体思路和算法实现,由于近年来神经网络在深度学**,尤其是无监督特征学**上的成功,理解神经网络的实现机制也许可以让“黑盒”变得不再神秘. 首先,作…
关键词: 输入层(Input layer).隐藏层(Hidden layer).输出层(Output layer) 理论上如果有足够多的隐藏层和足够大的训练集,神经网络可以模拟出任何方程.隐藏层多的时候就是深度学习啦 没有明确的规则来设计最好有多少个隐藏层,可以根据实验测试的误差以及准确度来实验测试并改进. 交叉验证方法(cross -validation):把样本分为K份,取一份为测试集,其他为训练集.共取K次,然后取其平均值 BP的步骤 1.初始化权重(weight)以及偏向(bias),随…
摘 要 在MATLAB环境下利用USB摄像头采集字符图像,读取一帧保存为图像,然后对读取保存的字符图像,灰度化,二值化,在此基础上做倾斜矫正,对矫正的图像进行滤波平滑处理,然后对字符区域进行提取分割出单个字符,识别方法一是采用模板匹配的方法逐个对字符与预先制作好的字符模板比较,如果结果小于某一阈值则结果就是模板上的字符:二是采用BP神经网络训练,通过训练好的net对待识别字符进行识别.最然后将识别结果通过MATLAB下的串口工具输出51单片机上用液晶显示出来. 关键字: 倾斜矫正,字符分割,模板…
摘 要 在MATLAB环境下利用USB摄像头採集字符图像.读取一帧保存为图像.然后对读取保存的字符图像,灰度化.二值化,在此基础上做倾斜矫正.对矫正的图像进行滤波平滑处理,然后对字符区域进行提取切割出单个字符.识别方法一是採用模板匹配的方法逐个对字符与预先制作好的字符模板比較,假设结果小于某一阈值则结果就是模板上的字符:二是採用BP神经网络训练.通过训练好的net对待识别字符进行识别.最然后将识别结果通过MATLAB下的串口工具输出51单片机上用液晶显示出来. keyword: 倾斜矫正.字符切…
神经网络的结构 神经网络的网络结构由输入层,隐含层,输出层组成.隐含层的个数+输出层的个数=神经网络的层数,也就是说神经网络的层数不包括输入层.下面是一个三层的神经网络,包含了两层隐含层,一个输出层.其中第一层隐含层的节点数为3,第二层的节点数为2,输出层的节点数为1:输入层为样本的两个特征X1,X2. 图1 三层神经网络 在神经网络中每一个节点的都与上一层的所有节点相连,称为全连接.神经网络的上一层输出的数据是下一层的输入数据.在图中的神经网络中,原始的输入数据,通过第一层隐含层的计算得出的输…
一.感知机 1.感知机的概念 感知机是用于二分类的线性分类模型,其输入是实例的特征向量,输出是实例的类别,类别取+1和-1二个值,+1代表正类,-1代表负类.感知机对应于输入空间(特征空间)中将实例分为正负两类的分割超平面,属于判别模型.感知机学习算法简单易于实现,分为原始形式和对偶形式. 2.感知机的原理 感知机是二分类的线性模型,其输入是实例的特征向量,输出的是事例的类别,分别是+1和-1,属于判别模型. 假设训练数据集是线性可分的,感知机学习的目标是求得一个能够将训练数据集正实例点和负实例…
秒懂神经网络---BP神经网络具体应用不能说的秘密 一.总结 一句话总结: 还是要上课和自己找书找博客学习相结合,这样学习效果才好,不能单视频,也不能单书 BP神经网络就是反向传播神经网络 1.BP神经网络是什么? 反向传播神经网络:通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出. BP网络(Back-ProPagation Network)又称反向传播神经网络, 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出.它是一种应用…
BP神经网络是包含多个隐含层的网络,具备处理线性不可分问题的能力.以往主要是没有适合多层神经网络的学习算法,,所以神经网络的研究一直处于低迷期. 20世纪80年代中期,Rumelhart,McClelland等成立了Parallel Distributed Procession(PDP)小组,提出了著名的误差反向传播算法(Error Back Propagtion,BP). BP和径向基网络属于多层前向神经网络.广泛应用于分类识别.逼近.回归.压缩等领域. BP神经网络(强调是用BP算法)一般是…
转自 huaweizte123的CSDN博客  链接 https://blog.csdn.net/huaweizte123/article/details/78803045 第一步.向前传播得到预测数据:向前传播的过程,即数据从输入层输入,经过隐含层,输出层的计算得到预测值,预测值为输出层的输出结果.网络层的输出即,该层中所有节点(神经元)的输出值的集合.我们以图一的神经网络结构为例,分析向前传播过程. 1.得到隐含层的输出y1,y2,y3: 2.获取到第二层的隐含层输出y4,y5,输入的数据也…
[废话外传]:终于要讲神经网络了,这个让我踏进机器学习大门,让我读研,改变我人生命运的四个字!话说那么一天,我在乱点百度,看到了这样的内容: 看到这么高大上,这么牛逼的定义,怎么能不让我这个技术宅男心向往之?现在入坑之后就是下面的表情: 好了好了,玩笑就开到这里,其实我是真的很喜欢这门学科,要不喜欢,老子早考公务员,找事业单位去了,还在这里陪你们牛逼打诨?写博客,吹逼? 1神经网络历史(本章来自维基百科,看过的自行跳过) 沃伦·麦卡洛克)[基于数学和一种称为阈值逻辑的算法创造了一种神经网络的计算…
秋招刚结束,这俩月没事就学习下斯坦福大学公开课,想学习一下深度学习(这年头不会DL,都不敢说自己懂机器学习),目前学到了神经网络部分,学习起来有点吃力,把之前学的BP(back-progagation)神经网络复习一遍加深记忆.看了许多文章发现一PPT上面写的很清晰,就搬运过来,废话不多说,直入正题: 单个神经元 神经网络是由多个"神经元"组成,单个神经元如下图所示: 这其实就是一个单层感知机,输入是由ξ1 ,ξ2 ,ξ3和Θ组成的向量.其中Θ为偏置(bias),σ为激活函数(tran…
神经网络曾经很火,有过一段低迷期,现在因为深度学习的原因继续火起来了.神经网络有很多种:前向传输网络.反向传输网络.递归神经网络.卷积神经网络等.本文介绍基本的反向传输神经网络(Backpropagation 简称BP),主要讲述算法的基本流程和自己在训练BP神经网络的一些经验. BP神经网络的结构 神经网络就是模拟人的大脑的神经单元的工作方式,但进行了很大的简化,神经网络由很多神经网络层构成,而每一层又由许多单元组成,第一层叫输入层,最后一层叫输出层,中间的各层叫隐藏层,在BP神经网络中,只有…
BP算法是一种最有效的多层神经网络学习方法,其主要特点是信号前向传递,而误差后向传播,通过不断调节网络权重值,使得网络的最终输出与期望输出尽可能接近,以达到训练的目的. 一.多层神经网络结构及其描述 下图为一典型的多层神经网络. 通常一个多层神经网络由L层神经元组成,其中:第1层称为输入层,最后一层(第L层)被称为输出层,其它各层均被称为隐含层(第2层~第L-1层). 令输入向量为: \[ \vec x = [x_1 \quad x_2 \quad \ldots \quad x_i \quad…
一.两层神经网络(感知机) import numpy as np '''极简两层反传(BP)神经网络''' # 样本 X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]]) y = np.array([0,0,1,1]) # 权值矩阵 初始化 Wi = 2 * np.random.random(3) - 1 for iter in range(10000): # 前向传播,计算误差 li = X lo = 1 / (1 + np.exp(-np.dot(l…
 BP神经网络基本原理 BP神经网络是一种单向传播的多层前向网络,具有三层或多层以上的神经网络结构,其中包含输入层.隐含层和输出层的三层网络应用最为普遍. 网络中的上下层之间实现全连接,而每层神经元之间无连接.当一对学习样本提供给网络后,神经元的激活值从输入层经各中间层向输出层传播,在输出层的各神经元获得网络的输入相应.然后,随着减小目标输出与实际误差的方向,从输出层经过各中间层修正各连接权值,最后回到输入层. BP算法是在建立在梯度下降基础上的,BP算法的知道思想是对网络权值与阈值的修正,使误…
BP神经网络基本原理: 误差逆传播(back propagation, BP)算法是一种计算单个权值变化引起网络性能变化的较为简单的方法.由于BP算法过程包含从输出节点开始,反向地向第一隐含层(即最接近输入层的隐含层)传播由总误差引起的权值修正,所以称为"反向传播".BP神经网络是有教师指导训练方式的多层前馈网络,其基本思想是:从网络输入节点输入的样本信号向前传播,经隐含层节点和输出层节点处的非线性函数作用后,从输出节点获得输出.若在输出节点得不到样本的期望输出,则建立样本的网络输出与…