pytorch kaggle 泰坦尼克生存预测】的更多相关文章

也不知道对不对,就凭着自己的思路写了一个 数据集:https://www.kaggle.com/c/titanic/data import torch import torch.nn as nn import pandas as pd import numpy as np class DataProcessing(object): def __init__(self): pass def get_data(self): data_train = pd.read_csv('train.csv')…
最近一直断断续续的做这个泰坦尼克生存预测模型的练习,这个kaggle的竞赛题,网上有很多人都分享过,而且都很成熟,也有些写的非常详细,我主要是在牛人们的基础上,按照数据挖掘流程梳理思路,然后通过练习每一步来熟悉应用python进行数据挖掘的方式. 数据挖掘的一般过程是:数据预览——>数据预处理(缺失值.离散值等)——>变量转换(构造新的衍生变量)——>数据探索(提取特征)——>训练——>调优——>验证 1 数据预览 1.1 head() 预览数据集的前面几条数据可以大致…
Kaggle初体验之泰坦尼特生存预测 学习完了决策树的ID3.C4.5.CART算法,找一个试手的地方,Kaggle的练习赛泰坦尼特很不错,记录下 流程     首先注册一个账号,然后在顶部菜单栏Competitions里面搜索Titanic,找到Titanic练习赛,练习赛就用用于帮助新手入门的,在比赛的页面有很多的入门推荐,很值得去一看. 获取数据集 探索数据集 清洗数据集 特征选择 训练数据集 预测数据集 提交结果文件 获取数据集     数据集在比赛面板菜单栏的Data里面,有三个数据集…
入门kaggle,开始机器学习应用之旅. 参看一些入门的博客,感觉pandas,sklearn需要熟练掌握,同时也学到了一些很有用的tricks,包括数据分析和机器学习的知识点.下面记录一些有趣的数据分析方法和一个自己撸的小程序. 1.Tricks 1) df.info():数据的特征属性,包括数据缺失情况和数据类型. df.describe(): 数据中各个特征的数目,缺失值为NaN,以及数值型数据的一些分布情况,而类目型数据看不到. 缺失数据处理:缺失的样本占总数比例极高,则直接舍弃:缺失样…
原文地址如下: https://www.kaggle.com/startupsci/titanic-data-science-solutions ---------------------------------------------------------------- 泰坦尼克数据科学解决方案: 1. 工作流程步骤: 在 Data Science Solutions book 这本书里,描述了在解决一个竞赛问题时所需要做的具体工作流程: 问题的定义 获取训练数据以及测试数据 加工.准备以及…
正文:14pt 代码:15px 1 初探数据 先看看我们的数据,长什么样吧.在Data下我们train.csv和test.csv两个文件,分别存着官方给的训练和测试数据. import pandas as pd #数据分析 import numpy as np #科学计算 from pandas import Series,DataFrame data_train = pd.read_csv("/Users/Hanxiaoyang/Titanic_data/Train.csv") da…
package kaggle import org.apache.spark.SparkContext import org.apache.spark.SparkConf import org.apache.spark.sql.{SQLContext, SparkSession} import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.classification.{LogisticR…
出处:http://blog.csdn.net/han_xiaoyang/article/details/49797143 2.背景 2.1 关于Kaggle 我是Kaggle地址,翻我牌子 亲,逼格这么高的地方,你一定听过对不对?是!这就是那个无数『数据挖掘先驱』们,在回答”枪我有了,哪能找到靶子练练手啊?”时候的答案! 这是一个要数据有数据,要实际应用场景有场景,要一起在数据挖掘领域high得不要不要的小伙伴就有小伙伴的地方啊!!! 艾玛,逗逼模式开太猛了.恩,不闹,不闹,说正事,Kaggl…
参考Kernels里面评论较高的一篇文章,整理作者解决整个问题的过程,梳理该篇是用以了解到整个完整的建模过程,如何思考问题,处理问题,过程中又为何下那样或者这样的结论等! 最后得分并不是特别高,只是到34%,更多是整理一个解决问题的思路,另外前面三个大步骤根据思维导图看即可,代码跟文字等从第四个步骤开始写起. ----------------------------------------------------------------------------------------------…
转载 逻辑回归应用之Kaggle泰坦尼克之灾 此转载只为保存!!! ————————————————版权声明:本文为CSDN博主「寒小阳」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明.原文链接:https://blog.csdn.net/han_xiaoyang/article/details/49797143…