(1)卷积:对图像元素的矩阵变换,是提取图像特征的方法,多种卷积核可以提取多种特征.一个卷积核覆盖的原始图像的范围叫做感受野(权值共享).一次卷积运算提取的特征往往是局部的,难以提取出比较全局的特征,因此需要在一层卷积基础上继续做卷积计算,这也就是多层卷积. (2)池化:降维的方法,按照卷积计算得出的特征向量维度大的惊人,不但会带来非常大的计算量,而且容易出现过拟合,解决过拟合的办法就是让模型尽量“泛化”,也就是再“模糊”一点,那么一种方法就是把图像中局部区域的特征做一个平滑压缩处理,这源于局部…