条件概率中的三个命题: 下面我们分条来解读一下这三个命题.…
设事件B为一共有r个人买了东西,设事件Ai为第i个人买了东西. 那么这个题目实际上就是求P(Ai|B),而P(Ai|B)=P(AiB)/P(B),其中P(AiB)表示事件Ai与事件B同时发生的概率,同时总状态并不多,因此我们可以枚举买东西的状态预处理出P(AiB)和P(B),再代入计算即可. 枚举就是一般的dfs,关键是明白这个过程. #include <cstdio> #include <cstring> int n,r; ],b[],sum; //sum是从n个人选出r个人的总…
公式: P(E|F)=P(E|GF)P(G|F)+P(E|GcF)P(Gc|F) 解释: 已知F发生,E发生的条件概率为P(E|F). 现在多考虑一个条件G,G可能发生也可能不发生. 若F已发生条件下G发生,意味着“GF都发生”. “GF都发生”为条件下,E发生的概率为P(E|GF):相应的若F发生且G不发生,E发生的概率为P(E|GcF). 但是且慢,G可能通过F发生也可能不通过F发生,因此还要将GF中的G限定在通过途径F发生,于是得到P(E|GF)P(G|F).相应的,G不发生时有P(E|G…
条件概率公式是高中数学的概率知识中比较常用的一个公式,今天我们来介绍一下在MathType中如何输入条件概率公式. 具体步骤如下: 步骤一 打开专业的公式编辑软件MathType 7,在输入框中输入"P()",当我们想要找条件概率公式中的"竖线"的时候,发现在MathType的快捷符号板中并没有"竖线"符号,那么就要求我们插入竖线符号.怎么插入竖线呢,首先打开"编辑",然后点击"插入符号",在"插…
http://www.zhihu.com/question/20962240 Yang Eninala杜克大学 生物化学博士 线性代数 收录于 编辑推荐 •2216 人赞同 ×××××11月22日已更新××××× 隐马尔可夫(HMM)好讲,简单易懂不好讲.我认为 @者也的回答没什么错误,不过我想说个更通俗易懂的例子.我希望我的读者不是专家,而是对这个问题感兴趣的入门者,所以我会多阐述数学思想,少写公式.霍金曾经说过,你多写一个公式,就会少一半的读者.所以时间简史这本关于物理的书和麦当娜关于性的书…
机器学习算法原理.实现与实践——机器学习的三要素 1 模型 在监督学习中,模型就是所要学习的条件概率分布或决策函数.模型的假设空间包含所有可能的条件概率分布或决策函数.例如,假设决策函数是输入变量的线性函数,那么模型的假设空间就是这些线性函数构成的函数的集合. 假设空间用$\mathcal{F}$表示.假设空间可以定义为决策函数的集合 $$\mathcal{F}=\{f|Y=f(X)\}$$ 其中,$X$和$Y$是定义在输入空间$\mathcal{X}$和输出空间$\mathcal{Y}$上的变…
条件随机场Conditional Random Field-CRF入门级理解   有向图与无向图模型 CRF模型是一个无向概率图模型,更宽泛地说,它是一个概率图模型.现实世界的一些问题可以用概率图模型表示.这里可以用一个简单的例子说明:建立一个简单的图模型来分析一部电影是否会获得高票房.这个例子主要用于介绍概率图模型,其中的观点内容纯属编造.经过“认真”分析,发现一部电影的票房和以下因素有很大的关系: 剧本是否精彩,内容是否充实: 演员阵容是否强大,是否有可以吸引票房的明星: 演员表演是否精彩到…
作为最早关注人工智能技术的媒体,机器之心在编译国外技术博客.论文.专家观点等内容上已经积累了超过两年多的经验.期间,从无到有,机器之心的编译团队一直在积累专业词汇.虽然有很多的文章因为专业性我们没能尽善尽美的编译为中文呈现给大家,但我们一直在进步.一直在积累.一直在提高自己的专业性.两年来,机器之心编译团队整理过翻译词汇对照表「红宝书」,编辑个人也整理过类似的词典.而我们也从机器之心读者留言中发现,有些人工智能专业词汇没有统一的翻译标准,这可能是因地区.跨专业等等原因造成的.举个例子,DeepM…
1.潜类别模型概述 潜在类别模型(Latent Class Model, LCM; Lazarsfeld & Henry, 1968)或潜在类别分析(Latent Class Analysis, LCA)是通过间断的潜变量即潜在类别(Class)变量来解释外显指标间的关联,使外显指标间的关联通过潜在类别变量来估计,进而维持其局部独立性的统计方法(见图1-1).其基本假设是,外显变量各种反应的概率分布可以由少数互斥的潜在类别变量来解释,每种类别对各外显变量的反应选择都有特定的倾向(邱皓政,2008…
[转] PRML笔记 - 1.1介绍 模式识别的目标 自动从数据中发现潜在规律,以利用这些规律做后续操作,如数据分类等. 模型选择和参数调节 类似的一族规律通常可以以一种模型的形式为表达,选择合适模型的过程称为模型选择(Model Selection).模型选择的目的只是选择模型的形式,而模型的参数是未定的. 从数据中获得具体规律的过程称为训练或学习,训练的过程就是根据数据来对选定的模型进行参数调节(Parameter Estimation)的过程,此过程中使用的数据为训练数据集(Trainin…