Bloom Filter 原理与应用】的更多相关文章

介绍 Bloom Filter是一种简单的节省空间的随机化的数据结构,支持用户查询的集合.一般我们使用STL的std::set, stdext::hash_set,std::set是用红黑树实现的,stdext::hash_set是用桶式哈希表.上述两种数据结构,都会需要保存原始数据信息,当数据量较大时,内存就会是个问题.如果应用场景中允许出现一定几率的误判,且不需要逆向遍历集合中的数据时,Bloom Filter是很好的结构. 优点 1.    查询操作十分高效. 2.    节省空间. 3.…
https://blog.csdn.net/a1368783069/article/details/52137417 # -*- encoding: utf-8 -*- """This module implements a bloom filter probabilistic data structure and an a Scalable Bloom Filter that grows in size as your add more items to it withou…
算法背景 如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定.链表.树.散列表(又叫哈希表,Hash table)等等数据结构都是这种思路,存储位置要么是磁盘,要么是内存.很多时候要么是以时间换空间,要么是以空间换时间. 在响应时间要求比较严格的情况下,如果我们存在内里,那么随着集合中元素的增加,我们需要的存储空间越来越大,以及检索的时间越来越长,导致内存开销太大.时间效率变低. 此时需要考虑解决的问题就是,在数据量比较大的情况下,既满足时间要求,又满足…
Bloom filter原理: https://en.wikipedia.org/wiki/Bloom_filter 推导过程结合博客: https://blog.csdn.net/jiaomeng/article/details/1495500 Counting bloom filter原理: https://blog.csdn.net/jiaomeng/article/details/1498283…
转自:http://blog.csdn.net/jiaomeng/article/details/1495500 之前看数学之美丽,里面有提到布隆过滤器的过滤垃圾邮件,感觉到何其的牛,竟然有这么高效的算法,一直在听这个名词,但一直没有正儿八经的去了解,今天看到了一篇关于Bloom Filter 的讲解,真是有种沁人心脾的感觉.转过来加深自己的了解. 在开始转载之前,为了加深读者的印象,先介绍一下在BloomFilter里面含有的重要角色 先在脑中留下印象,然后在来消化转载的内容 Bloom Fi…
什么情况下需要布隆过滤器? 先来看几个比较常见的例子 字处理软件中,需要检查一个英语单词是否拼写正确 在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上 在网络爬虫里,一个网址是否被访问过 yahoo, gmail等邮箱垃圾邮件过滤功能 这几个例子有一个共同的特点: 如何判断一个元素是否存在一个集合中? 常规思路 数组 链表 树.平衡二叉树.Trie Map (红黑树) 哈希表 虽然上面描述的这几种数据结构配合常见的排序.二分搜索可以快速高效的处理绝大部分判断元素是否存在集合中的需求.但是当集合里…
Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数.将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的.同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字.所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了.…
Bloom Filter概念和原理 Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合.Bloom Filter的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive).因此,Bloom Filter不适合那些“零错误”的应用场合.而在能容忍低错误率的应用场合下,Bloom Filter通过极少的错误换取了存储空间的极大节省. 集合表示和元…
引子 <数学之美>介绍布隆过滤器非常经典: 在日常生活中,包括设计计算机软件时,经常要判断一个元素是否在一个集合中.比如: 在字处理软件中,需要检查一个英语单词是否拼写正确(也就是要判断它是否在已知的字典中): 在FBI,一个嫌疑人的名字是否已经在嫌疑犯的名单上: 在网络爬虫里,一个网站是否已访问过: yahoo, gmail等邮箱垃圾邮件过滤功能,等等 ... 以上场景需要解决的共同问题是:如何查看一件事物是否在有大量数据的集合里. 通常的做法有以下几种思路: 数组. 链表. 树.平衡二叉树…
应用场景 主要是解决大规模数据下不需要精确过滤的场景,如检查垃圾邮件地址,爬虫URL地址去重,解决缓存穿透问题等. 布隆过滤器(Bloom Filter)是1970年由布隆提出的.它实际上是一个很长的二进制向量和一系列随机映射函数.布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难.hash原理Hash (哈希,或者散列)函数在计算机领域,尤其是数据快速查找领域,加密领域用的极广.其作用是将一个大的数据集映射到一个小…