首先我们发现$\frac{b+\sqrt{d}}{2}$这个形式好像一元二次方程的求根公式啊(???反正我发现不了) 然后我们又想到虽然这个东西不好求但是$(\frac{b-\sqrt{d}}{2})^n$好像挺好求的啊(???反正我想不到)(由题目给的范围,这玩意在(-1,1)) 于是把这个方程写出来:$x^2-b+\frac{b^2-d}{4}=0$,设它的两根是$x_1=\frac{b+\sqrt{d}}{2} , x_2=\frac{b-\sqrt{d}}{2}$ 于是就是要求$\lfl…
题目描述 B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 输入 一行三个整数 b;d;n 输出 一行一个数表示模 7528443412579576937 之后的结果. 样例输入 1 5 9 样例输出 76 提示 其中 0<b^2<=d<(b+1)^2<=10^18,n<=10^18,并且 b mod 2=1,d mod 4=1 题解 数论 高中数学 注意题目中给出的0<b^2<=d<(b+1)^2,这说明了什么?…
BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法 Description B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 Input 一行三个整数 b;d;n   Output 一行一个数表示模 7528443412579576937 之后的结果. Sample Input 1 5 9 Sample Output 76 HINT 其中 0<b^2< = d<(b+1)2< = 10^18,n< = 10^18,并且…
题目要求求出(√2+√3)2n的整数部分再mod 1024. (√2+√3)2n=(5+2√6)n 如果直接计算,用double存值,当n很大的时候,精度损失会变大,无法得到想要的结果. 我们发现(5+2√6)n+(5-2√6)n是一个整数(2√6的偶数次幂总会正负抵消掉),并且(5-2√6)n是小于1的.所以我们就只需要求出Sn-1即可.令 An=(5+2√6)n;  Bn=(5-2√6)n. Sn=An+Bn     Sn为整数. Sn*((5+2√6)+(5-2√6))=Sn*10 Sn*…
题面描述 阿申准备报名参加\(GT\)考试,准考证号为\(N\)位数\(x_1,x_2,...,x_n\ (0\leq x_i\leq 9)\),他不希望准考证号上出现不吉利的数字. 他的不吉利数字\(a_1,a_2,...,a_m\ (0\leq a_i\leq 9)\)有\(M\)位,不出现是指\(x_1,x_2,...,x_n\)中没有恰好一段等于\(a_1,a_2,...,a_m\). \(a_1\)和\(x_1\)可以为\(0\) 输入格式 第一行输入\(N,M,K\).接下来一行输入…
Description 传送门 Solution 由于这里带了小数,直接计算显然会爆掉,我们要想办法去掉小数. 而由于原题给了暗示:b2<=d<=(b+1)2,我们猜测可以利用$(\frac{b-\sqrt{d}}{2})^{n}$的范围为(-1,1)的性质. 则$ans=((\frac{b+\sqrt{d}}{2})^{n}+(\frac{b-\sqrt{d}}{2})^{n})-(\frac{b-\sqrt{d}}{2})^{n}$. 易得第一个括号里的式子不包含小数(强行组合数算一下就发…
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4002 题解 神仙题. 根据下面的一个提示: \[ b^2 \leq d \leq (b+1)^2 \] 也就是说 \(-1 < b - \sqrt d \leq 0\). 那么如果我们构造出一个数列 \(f\),其通项公式为 \[ f_n = (\frac{b + \sqrt d}{2})^n + (\frac{b - \sqrt d}{2})^n \] 因为后面的 \((\frac{b -…
据说这两场加起来只要170= =而这是最简单的题目了QAQ 看到$(\frac {b + \sqrt {d} } {2} )^n$,第一反应是共轭根式$(\frac {b - \sqrt {d} } {2} )^n$ 首先有$(\frac {b + \sqrt {d} } {2} )^n + (\frac {b - \sqrt {d} } {2} )^n$为整数 由高中课本知识可知,上式其实是一个三项递推数列的通项公式,而数列的递推式非常简单 $$f[x] = b * f[x - 1] - \f…
题目链接 BZOJ4002 题解 容易想到\(\frac{b + \sqrt{d}}{2}\)是二次函数\(x^2 - bx + \frac{b^2 - d}{4} = 0\)的其中一根 那么就有 \[x^2 = bx - \frac{b^2 - d}{4}\] 两边乘一个\(x^n\) \[x^n = bx^{n - 1} - \frac{b^2 - d}{4}x^{n - 2}\] 再观察题目条件,可以发现\(|b^2 - d| < 1\),所以明显要用到另一个根\(\frac{b - \s…
Description B 君有两个好朋友,他们叫宁宁和冉冉. 有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求((b+sqrt(D)/2)^N的整数部分,请输出结果 Mod 7528443412579576937 之后的结果吧. Input 一行三个整数 b;d;n Output 一行一个数表示模 7528443412579576937 之后的结果. Sample Input 1 5 9 Sample Output 76 HINT 0 <b^2 < d< (b +1)2 <…