SAM复杂度证明】的更多相关文章

关于$SAM$的复杂度证明(大部分是对博客的我自己的理解和看法) 这部分是我的回忆,可省略 先回忆一下$SAM$ 我所理解的$SAM$,首先扒一张图 初始串$aabbabd$ 首先发现,下图里的$S->9$的一条直线是$aabbabd$是原串 那么从这里我们就可以看到$endpos$关系了,和$AC$自动机不同的是 发现一些子串结尾是相同的,那么就可以共用一个节点,那么从起点到这个点能表示的所有子串的$endpos$相同,那么显然可以共用这个点,这就是空间上的能省就省 又因为这个$SAM$是为了…
非旋FHQ Treap复杂度证明(类比快排) a,b都是sort之后的排列(从小到大) 由一个排列a构造一颗BST,由于我们只确定了中序遍历=a,但这显然是不能确定一棵树的形态的. 由一个排列b构造一颗Heap(大根),由于没有重复元素,然后人为钦定左儿子<右儿子,那么他的后序遍历=b. 但是一棵树,如果中序遍历和后续遍历确定了,那么他的形态也就确定了.证明考虑构造一种由中序和后序遍历的序列还原一颗确定的树的算法. 考虑对于一个后序遍历,最后那个数\(u\)一定是根. 那么确定\(u\)在中序遍…
min_25 筛是由 min_25 大佬使用后普遍推广的一种新型算法,这个算法能在 \(O({n^{3\over 4}\over log~ n})\) 的复杂度内解决所有的积性函数前缀和求解问题(个人感觉套上素数定理证明的复杂度的话应该要把下面的 log 改成 ln ,不过也差不多啦~) 其实 min_25 筛的入门TXC 大佬的 blog 已经写的非常棒了QVQ 所以搬博客的话鉴于博主太懒了就不干了...直接帮 TXC 大佬安利博客完事 这篇博客主要的目的是证明网上大多没有的 min_25 筛…
本文用势能法证明\(Splay\)的均摊复杂度,对\(Splay\)的具体操作不进行讲述. 为了方便本文的描述,定义如下内容: 在文中我们用\(T\)表示一棵完整的\(Splay\),并(不严谨地)用\(|T|\)表示\(T\)这棵\(Splay\)的节点数目. 如无特殊说明,小写英文字母(如\(x\),\(y\),\(z\))在本文中表示\(T\)的一个节点,并(不严谨地)用\(|x|\)表示以节点\(x\)为根的子树的大小,\(x\in T\)表示节点\(x\)在\(T\)中. 一般我们默认…
在摊还分析中,通过求数据结构的一系列的操作的平均时间,来评价操作的代价.这样,即使这些操作中的某个单一操作的代价很高,也可以证明平均代价很低.摊还分析不涉及概率,它可以保证最坏情况下每个操作的平均性能. 摊还分析有三种常用的技术: 聚合分析,它确定$n$个操作的总代价的上界为$T(n)$,所以每个操作的平均代价为$\frac{{T(n)}}{n}$.每个操作都有相同的摊还代价. 核算法:分析每个操作的摊还代价,不同于聚合分析,每种操作的摊还代价是不同的,核算法将序列中较早的操作的余额作为“信用”…
线性时间选择算法中,最坏情况仍然可以保持O(n). 原因是通过对中位数的中位数的寻找,保证每次分组后,任意一组包含元素的数量不会大于某个值. 普通的Partition最坏情况下,每次只能排除一个元素,所以会造成O(n2)的复杂度. 具体证明可以参考: 王云鹏论文<线性时间选择算法时间复杂度深入研究>…
引言 KMP算法应该是看了一次又一次,比赛的时候字符串不是我负责,所以学到的东西又还给网上的博客了-- 退役后再翻开看,看到模板,心想这不是\(O(n^2)\)的复杂度吗? 有两个循环也不能看做是\(O(n^2)​\)的,这要用到摊还分析. 模板 这里用到的模板是算竞上的 calc_next() Next[1] = 0; for (int i = 2, j = 0; i <= n; ++i) { while (j > 0 && a[i] != a[j + 1]) j = Nex…
(b,a%b) a%b<=min(b,a%b)/2 a>=b时每次至少缩减一半 a<b时下次a>b 所以复杂度最多2log(max(a,b)) 证明:a%b<=min(a,a%b)/2 a>b时 b<=a/2 那么a%b<b<=b<=a/2 a>b时 b>a/2 那么a%b=a-b<=a/2 a<b时 a%b=a 证毕…
以下均为内网 树上染色 https://www.lydsy.com/JudgeOnline/problem.php?id=4033 可怜与超市 http://hzoj.com/contest/62/problem/5 可以简单的列出状态转移方程. 它的转移过程类似: void dfs(int x) { ;i<p[x].size();++i) dfs(p[x][i]); ; memset(tmp[cur],0x3f,sizeof(tmp[cur])); tmp[cur][][]=tmp[cur][…
关于SAM和广义SAM 不是教程 某些思考先记下来 SAM 终于学会了这个东西诶...... 一部分重要性质 确定一个重要事情,S构造出的SAM的一个重要性质是当且仅当对于S的任意一个后缀,可以从1号节点走到终止状态.专业的名词叫做有限状态自动机. trans[st][c]表示的是对于状态st,如果将st中任意串s加一个c,那么会到达的新状态new,显然new是唯一的.假如不唯一那么s一定不属于同一个st. fa[st]表示的是对于状态st,如果慢慢缩小st中后缀长度,会到达的第一个状态.规定一…