一.ConvNext Highlight 核心宗旨:基于ResNet-50的结构,参考Swin-Transformer的思想进行现代化改造,知道卷机模型超过trans-based方法的SOTA效果. 启发性结论:架构的优劣差异没有想象中的大,在同样的FLOPs下,不同的模型的性能是接近的. 意义:这篇文章可以作为很好的索引,将一些从卷积网络演进过程中的重要成果收录,适合新手. 二.背景介绍(Related Work) 2.1 一句话回顾ResNet-50 由48层卷积 + 1个maxpool +…
前言 本文深入探讨了如何设计神经网络.如何使得训练神经网络具有更加优异的效果,以及思考网络设计的物理意义. 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读.CV招聘信息. 论文:https://arxiv.org/pdf/2201.03545.pdf 代码: https://github.com/facebookresearch/ConvNeXt 引言 VIT问世以后,Swin Transformer在图像领域(分类下游任务)的全面大幅度超越 CNN 模型,仿…
目录 XiangBai--[PAMI2018]ASTER_An Attentional Scene Text Recognizer with Flexible Rectification 作者和论文 方法概述 1. 主要思路 2. 方法框架和流程 3. 文章亮点 方法细节 1. 背景 2. Rectification Network 3. Recognition Network 4. 网络训练 实验结果 总结与收获 参考文献 XiangBai--[PAMI2018]ASTER_An Attent…
Action4D:人群和杂物中的在线动作识别:CVPR209论文阅读 Action4D: Online Action Recognition in the Crowd and Clutter 论文链接: http://openaccess.thecvf.com/content_CVPR_2019/papers/You_Action4D_Online_Action_Recognition_in_the_Crowd_and_Clutter_CVPR_2019_paper.pdf 摘要 在拥挤杂乱的环…
白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 2.  论文思路和方法 1)  问题范围: 单词识别 2)  CNN层:使用标准CNN提取图像特征,利用Map-to-Sequence表示成特征向量: 3)  RNN层:使…
前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进行过模拟比赛,恐怕还是会捉襟见肘,不能够游刃有余地应对真正比赛中可能会遇到的一些困难.笔者就自己的经验稍稍给大家谈谈,在看了很多数学模型的书籍之后,如何通过论文阅读,将我们的水平上升一个新的台阶,达到一个质的飞跃! 首先,大家要搞清楚教材和论文的区别.教材的主要目的是介绍方法,前人总结出来的最经典的…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 下一代的Hadoop框架,支持10,000+节点规模的Hadoop集群,支持更灵活的编程模型 == 核心思想 == 固定的编程模型,单点的资源调度和任务管理方式,使得Hadoop 1…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 为了提高资源的利用率以及满足不同应用的需求,在同一集群内会部署各种不同的分布式运算框架(cluster computing framework),他们有着各自的调度逻辑. Mesos…
本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但传统的seq2seq存在很多问题.本文就提出了两个问题: 1)传统的seq2seq模型倾向于生成安全,普适的回答,例如“I don’t know what you are talking about”.为了解决这个问题,作者在更早的一篇文章中提出了用互信息作为模型的目标函数.具体见A Diversi…
本文先对FCN的会议论文进行了粗略的翻译,使读者能够对论文的结构有个大概的了解(包括解决的问题是什么,提出了哪些方案,得到了什么结果).然后,给出了几篇博文的连接,对文中未铺开解释的或不易理解的内容作了详尽的说明.最后给出了FCN代码的详解(待更新). Fully Convolutional Networks for Semantic Segmentation 用于语义分割的全卷积网络 摘要 卷积网络是可以产生具有层次结构的特征的强大的视觉模型.我们展示了只通过由端到端,像素像素训练的卷积网络进…