Canny检测算法与实现】的更多相关文章

1.原理 图象边缘就是图像颜色快速变化的位置,对于灰度图像来说,也就是灰度值有明显变化的位置.图像边缘信息主要集中在高频段,图像锐化或检测边缘实质就是高通滤波.数值微分可以求变化率,在图像上离散值求梯度,图像处理中有多种边缘检测(梯度)算子,常用的包括普通一阶差分,Robert算子(交叉差分),Sobel算子,二阶拉普拉斯算子等等,是基于寻找梯度强度. Canny 边缘检测算法是John F. Canny 于1986年开发出来的一个多级边缘检测算法,也被很多人认为是边缘检测的 最优算法, 最优边…
原文地址:http://blog.csdn.net/likezhaobin/article/details/6892176 原文地址:http://blog.csdn.net/likezhaobin/article/details/6892629 图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看作是一个阶跃,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值.图象的边缘部分集中了图象的大部分信息,图象边缘的确定与提取对于整个图象场景的识别与理解是非常重要…
转自:http://blog.csdn.net/likezhaobin/article/details/6892176 图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看作是一个阶跃,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值.图象的边缘部分集中了图象的大部分信息,图象边缘的确定与提取对于整个图象场景的识别与理解是非常重要的,同时也是图象分割所依赖的重要特征,边缘检测主要是图象的灰度变化的度量.检测和定位,自从1959提出边缘检测以来,经过五十多年…
传统的Canny边缘检测算法是一种有效而又相对简单的算法,可以得到很好的结果(可以参考上一篇Canny边缘检测算法的实现).但是Canny算法本身也有一些缺陷,可以有改进的地方. 1. Canny边缘检测第一步用高斯模糊来去掉噪声,但是同时也会平滑边缘,使得边缘信息减弱,有可能使得在后面的步骤中漏掉一些需要的边缘,特别是弱边缘和孤立的边缘,可能在双阀值和联通计算中被剔除.很自然地可以预见,如果加大高斯模糊的半径,对噪声的平滑力度加大,但也会使得最后得到的边缘图中的边缘明显减少.这里依然用Lena…
传统的Canny边缘检测算法是一种有效而又相对简单的算法,可以得到很好的结果(可以参考上一篇Canny边缘检测算法的实现).但是Canny算法本身也有一些缺陷,可以有改进的地方. 1. Canny边缘检测第一步用高斯模糊来去掉噪声,但是同时也会平滑边缘,使得边缘信息减弱,有可能使得在后面的步骤中漏掉一些需要的边缘,特别是弱边缘和孤立的边缘,可能在双阀值和联通计算中被剔除.很自然地可以预见,如果加大高斯模糊的半径,对噪声的平滑力度加大,但也会使得最后得到的边缘图中的边缘明显减少.这里依然用Lena…
图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看作是一个阶跃,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值. 1.Canny边缘检测的基本特征 (1) 必须满足两个条件:①能有效地抑制噪声:②必须尽量精确确定边缘的位置. (2) 根据对信噪比与定位乘积进行测度,得到最优化逼近算子.这就是Canny边缘检测算子. (3) 类似与Marr(LoG)边缘检测方法,也属于先平滑后求导数的方法. 2. Canny边缘检测算法步骤 步骤1:用高斯滤波器平滑处理…
一.Canny算法介绍 Canny 的目标是找到一个最优的边缘检测算法,最优边缘检测的含义是: 好的检测- 算法能够尽可能多地标识出图像中的实际边缘. 好的定位- 标识出的边缘要尽可能与实际图像中的实际边缘尽可能接近. 最小响应- 图像中的边缘只能标识一次,并且可能存在的图像噪声不应标识为边缘. 推文:Canny边缘检测算法原理及其VC实现详解(一) 1.canny算法步骤 1.高斯模糊--GaussianBlur 消除噪声. 一般情况下,使用高斯平滑滤波器卷积降噪.,因为canny是对噪声敏感…
Canny 边缘检测算法 Steps: 高斯滤波平滑 计算梯度大小和方向 非极大值抑制 双阈值检测和连接 代码结构: Canny Edge Detection | Gaussian_Smoothing | | convolution.py | | | convolution() | | gaussion_smoothing.py | | | dnorm() | | | gaussian_kernel() | | | gaussian_blur() | Sobel_Filter | | sobel…
目录 Canny边缘检测算法(基于OpenCV的Java实现) 绪论 Canny边缘检测算法的发展历史 Canny边缘检测算法的处理流程 用高斯滤波器平滑图像 彩色RGB图像转换为灰度图像 一维,二维高斯函数及分布 生成高斯滤波卷积核 单色高斯滤波与彩色高斯滤波 用Sobel等梯度算子计算梯度幅值和方向 梯度 图像灰度值的梯度的简单求法 使用Sobel算子来计算梯度的大小及方向: 对梯度幅值进行非极大值抑制 双阈值检测 抑制孤立低阈值点 Reference Canny边缘检测算法(基于OpenC…
摘  要: 针对目前常用的运动目标提取易受到噪声影响.易出现阴影和误检漏检等情况,提出了一种基于Sobel算子的彩色边缘图像检测和帧差分相结合的检测方法.首先用Sobel算子提取视频流中连续4帧图像的彩色边缘图像,然后将边缘图像进行隔帧差分相与,提取出较精确的运动目标边缘轮廓.提取的轮廓经过一系列的形态学操作填充,可得到完整的运动目标.实验结果表明,该方法对运动目标边缘轮廓提取准确,抗噪 摘  要: 针对目前常用的运动目标提取易受到噪声影响.易出现阴影和误检漏检等情况,提出了一种基于Sobel算…