梯度下降法及一元线性回归的python实现 一.梯度下降法形象解释 设想我们处在一座山的半山腰的位置,现在我们需要找到一条最快的下山路径,请问应该怎么走?根据生活经验,我们会用一种十分贪心的策略,即在现在所处的位置上找到一个能够保证我们下山最快的方向,然后向着该方向行走:每到一个新位置,重复地应用上述贪心策略,我们就可以顺利到达山底了.其实梯度下降法的运行过程和上述下山的例子没有什么区别,不同的是我们人类可以凭借我们的感官直觉,根据所处的位置来选择最佳的行走方向,而梯度下降法所依据的是严格的数学…
上周在实验室里师姐说了这么一个问题,对于线性回归问题,最小二乘法和梯度下降方法所求得的权重值是一致的,对此我颇有不同观点.如果说这两个解决问题的方法的等价性的确可以根据数学公式来证明,但是很明显的这个说法是否真正的成立其实很有其它的一些考虑因素在里面,以下给出我个人的一些观点: 1. 首先,在讨论最小二乘法和梯度下降对某数据集进行线性拟合的结果是否相同的问题之前,我们应该需要确保该数据集合的确符合线性模型,如果不符合那么得出的结果将会是非常有意思的, 该种情况在之前的博客中已有介绍,下面给出网址…
sklearn中实现随机梯度下降法 随机梯度下降法是一种根据模拟退火的原理对损失函数进行最小化的一种计算方式,在sklearn中主要用于多元线性回归算法中,是一种比较高效的最优化方法,其中的梯度下降系数(即学习率eta)随着遍历过程的进行在不断地减小.另外,在运用随机梯度下降法之前需要利用sklearn的StandardScaler将数据进行标准化. #sklearn中实现随机梯度下降多元线性回归 #1-1导入相应的数据模块import numpy as npimport matplotlib.…
网上对于线性回归的讲解已经很多,这里不再对此概念进行重复,本博客是作者在听吴恩达ML课程时候偶然突发想法,做了两个小实验,第一个实验是采用最小二乘法对数据进行拟合, 第二个实验是采用梯度下降方法对数据集进行线性拟合,下面上代码: 最小二乘法: #!/usr/bin/env python #encoding:UTF-8 import numpy as np import matplotlib.pyplot as plt N=10 X=np.linspace(-3, 3, N) Y=(X+10.0)…
梯度下降法的python代码实现(多元线性回归最小化损失函数) 1.梯度下降法主要用来最小化损失函数,是一种比较常用的最优化方法,其具体包含了以下两种不同的方式:批量梯度下降法(沿着梯度变化最快的方向进行搜索最小值)和随机梯度下降法(主要随机梯度下降,通过迭代运算,收敛到最小值) 2.随机梯度与批量梯度计算是梯度下降的两种比较常用的方法,随机梯度下降法计算效率较高,不过不太稳定,对于批量梯度下降法,虽然计算速度较慢,但是计算方向稳定,它一定会朝着我们最优化的方向不断的进行靠近计算,结合以上两种方…
2019/3/25 一元线性回归--梯度下降/最小二乘法_又名:一两位小数点的悲剧_ 感觉这个才是真正的重头戏,毕竟前两者都是更倾向于直接使用公式,而不是让计算机一步步去接近真相,而这个梯度下降就不一样了,计算机虽然还是跟从现有语句/公式,但是在不断尝试中一步步接近目的地. 简单来说,梯度下降的目的在我看来还是要到达两系数的偏导数函数值为零的取值,因此,我们会从"任意一点"开始不断接近,由于根据之前最小二乘法的推导,可以说方差的公式应该算一个二次函数...?总之,这么理解的话就算只用中…
在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践一下吧. 先来回顾一下用最小二乘法求解参数的公式:. (其中:,,) 再来看一下随机梯度下降法(Stochastic Gradient Descent)的算法步骤: 除了算法中所需的超参数α(学习速率,代码中写为lr)和epsilon(误差值),我们增加了另一个超参数epoch(迭代次数).此外,为方便起见,…
梯度下降法是非常常见的优化方法,在神经网络的深度学习中更是必会方法,但是直接从深度学习去实现,会比较复杂.本文试图使用梯度下降来优化最简单的LSR线性回归问题,作为进一步学习的基础. import numpy as np import pandas as pd from numpy import * from pandas import * import matplotlib.pyplot as plt x = np.array([[1,2],[2,1],[3,2.5],[4,3], [5,4]…
grad_desc .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .tab…
单变量线性回归(Linear Regression with One Variable) 什么是线性回归?线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法(取自 百度百科). 例如:现在有一堆散乱的点,想找出一个一元一次方程来让这些点的分布误差最小(就是找出一条最合适的直线来贯穿这些点). 图中红色直线就是我们需要找的线.这条直线的表示为: y=ax+b.那么找出a.b这两个变量最合适的值就叫线性回归. 在图片中,蓝色的点用(xi,yi)来表示.m…