【spark 算子案例】】的更多相关文章

package spark_example01; import java.io.File; import java.io.FileWriter; import java.io.IOException; import java.util.Random; /** */ public class PeopleInfoFileGenerator { public static void main(String[] args){ File file = new File("/Users/xls/Deskt…
Spark算子总结(带案例) spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key-Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Key-Value型的数据. 3.Action算子,这类算子会触发SparkContext提交作业. 一.Value型Transformation算子 1)map val a = sc.parallel…
spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key-Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Key-Value型的数据. 3.Action算子,这类算子会触发SparkContext提交作业. 一.Value型Transformation算子 1)map val a = sc.parallelize(List() val…
http://lxw1234.com/archives/2015/07/363.htm Spark算子:RDD基本转换操作(1)–map.flagMap.distinct Spark算子:RDD创建操作 Spark算子:RDD基本转换操作(2)–coalesce.repartition Spark算子:RDD基本转换操作(3)–randomSplit.glom Spark算子:RDD基本转换操作(4)–union.intersection.subtract Spark算子:RDD基本转换操作(5…
本課主題 通过 Spark-shell 窥探程序运行时的状况 TaskScheduler 与 SchedulerBackend 之间的关系 FIFO 与 FAIR 两种调度模式彻底解密 Task 数据本地性资源分配源码实现 引言 TaskScheduler 是 Spark 整个调度的底层调度器,底层调度器是负责具体 Task 本身的运行的,所以豪无疑问的是一个至关重要的内容.希望这篇文章能为读者带出以下的启发: 了解 程序运行时具体创建的实例对象 了解 TaskScheduler 与 Sched…
  UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现   测试数据 java代码 package com.hzf.spark.study; import java.util.Map; import java.util.Set; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.jav…
UserView--第一种方式set去重,基于Spark算子的java代码实现 测试数据 java代码 package com.hzf.spark.study; import java.util.HashSet; import java.util.Iterator; import java.util.Set; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.ap…
[原创 Hadoop&Spark 动手实践 13]Spark综合案例:简易电影推荐系统…
前言 传统的RDD相对于mapreduce和storm提供了丰富强大的算子.在spark慢慢步入DataFrame到DataSet的今天,在算子的类型基本不变的情况下,这两个数据集提供了更为强大的的功能.但也有些功能暂时无法使用.比如reduceByKey,在DataFrame和DataSet里是没有的.所以觉得有必要做一些梳理. 准备工作 测试数据,json格式: { "DEVICENAME": "test1", "LID": 17050131…
Spark算子实战应用 数据集 :http://grouplens.org/datasets/movielens/ MovieLens 1M Datase 相关数据文件 : users.dat ---UserID::Gender::Age::Occupation::Zip-code movies.dat --- MovieID::Title::Genres ratings.dat ---UserID::MovieID::Rating::Timestamp SogouQ.mini 完成以下业务需求…
Spark 是大数据领域的一大利器,花时间总结了一下 Spark 常用算子,正所谓温故而知新. Spark 算子按照功能分,可以分成两大类:transform 和 action.Transform 不进行实际计算,是惰性的,action 操作才进行实际的计算.如何区分两者?看函数返回,如果输入到输出都是RDD类型,则认为是transform操作,反之为action操作. 准备 准备阶段包括spark-shell 界面调出以及数据准备.spark-shell 启动命令如下: bin/spark-s…
常见的七种Hadoop和Spark项目案例 有一句古老的格言是这样说的,如果你向某人提供你的全部支持和金融支持去做一些不同的和创新的事情,他们最终却会做别人正在做的事情.如比较火爆的Hadoop.Spark和Storm,每个人都认为他们正在做一些与这些新的大数据技术相关的事情,但它不需要很长的时间遇到相同的模式.具体的实施可能有所不同,但根据我的经验,它们是最常见的七种项目. 项目一:数据整合 称之为“企业级数据中心”或“数据湖”,这个想法是你有不同的数据源,你想对它们进行数据分析.这类项目包括…
一.spark的算子分类 转换算子和行动算子 转换算子:在使用的时候,spark是不会真正执行,直到需要行动算子之后才会执行.在spark中每一个算子在计算之后就会产生一个新的RDD. 二.在编写spark程序的时候,会遇到可以通过spark算子完成的操作,同时,scala原生语法也可以完成的操作是,两者的区别是什么? scala在执行语句的时候是在JVM进程执行,所有的计算全是在JVM中通过相应的调度完成. 而spark的RDD执行时,是通过分布式计算的方式完成. 三.转换算子的使用 map算…
常用transformation及action介绍,spark算子详解 一.常用transformation介绍 1.1 transformation操作实例 二.常用action介绍 2.1 action操作实例 三.spark算子详解 3.1弹性分布式数据集 (RDD) 3.2Spark 算子大致可以分为以下两类 3.2.1Transformation 变换/转换算子:这种变换并不触发提交作业,完成作业中间过程处理 3.2.2Action 行动算子:这类算子会触发 SparkContext…
1.spark的算子分为转换算子和Action算子,Action算子将形成一个job,转换算子RDD转换成另一个RDD,或者将文件系统的数据转换成一个RDD 2.Spark的算子介绍地址:http://spark.apache.org/docs/2.3.0/rdd-programming-guide.html 3.Spark操作基本步骤[java版本,其他语言可以根据官网的案例进行学习] (1)创建配置文件,将集群的运行模式设置好,给作业起一个名字,可以使用set方法其他配置设入. SparkC…
Aggregate函数 一.源码定义 /** * Aggregate the elements of each partition, and then the results for all the partitions, using * given combine functions and a neutral "zero value". This function can return a different result * type, U, than the type of t…
摘要  1.使用reduceByKey/aggregateByKey替代groupByKey 2.使用mapPartitions替代普通map 3.使用foreachPartitions替代foreach 4.使用filter之后进行coalesce操作 5.使用repartitionAndSortWithinPartitions替代repartition与sort类操作 6.使用broadcast使各task共享同一Executor的集合替代算子函数中各task传送一份集合 7.使用相同分区方…
1:Zip算子 def zip[U](other: RDD[U])(implicit arg0: ClassTag[U]): RDD[(T, U)] 将两个RDD做zip操作,如果当两个RDD分区数目不一样的话或每一个分区数目不一样的话则会异常. 例如: val rdd1 = sc.parallelize(Array(1,2,3,4,5,6),2) val rdd2 = sc.parallelize(Array(1,2,3,4,5,6),3) rdd.zip(rdd1).collect 异常信息…
package com.dingxin.datainit import org.apache.log4j.{Level, Logger} import org.apache.spark.sql.SparkSession /** * Created by zhen on 2018/12/18. */ object RDDTransform { def main(args: Array[String]) { Logger.getLogger("org.apache.spark").setL…
1.概述 最近有同学问道,除了使用 Storm 充当实时计算的模型外,还有木有其他的方式来实现实时计算的业务.了解到,在使用 Storm 时,需要编写基于编程语言的代码.比如,要实现一个流水指标的统计,需要去编写相应的业务代码,能不能有一种简便的方式来实现这一需求.在解答了该同学的疑惑后,整理了该实现方案的一个案例,供后面的同学学习参考. 2.内容 实现该方案,整体的流程是不变的,我这里只是替换了其计算模型,将 Storm 替换为 Spark,原先的数据收集,存储依然可以保留. 2.1 Spar…
map map(func) Return a new distributed dataset formed by passing each element of the source through a function func. 返回通过函数func传递源的每个元素形成的新的分布式数据集.通过函数得到一个新的分布式数据集. var rdd = session.sparkContext.parallelize(1 to 10) rdd.foreach(println) println("===…
案例 aggregateByKey算子其实相当于是针对不同“key”数据做一个map+reduce规约的操作. 举一个简单的在生产环境中的一段代码 有一些整理好的日志字段,经过处理得到了RDD类型为(String,(String,String))的List格式结果,其中各个String代表的是:(用户名,(访问时间,访问页面url)) 同一个用户可能在不同的时间访问了不同或相同的页面,为了合并同一个用户的访问行为,写了下面这段代码,用到aggregateByKey. val data = sc.…
在spark中,reduceByKey.groupByKey和combineByKey这三种算子用的较多,结合使用过程中的体会简单总结: 我的代码实践:https://github.com/wwcom614/Spark •reduceByKey 用于对每个key对应的多个value进行merge操作,最重要的是它能够在本地先进行merge操作,并且merge操作可以通过函数自定义: •groupByKey 也是对每个key进行操作,但只生成一个sequence,groupByKey本身不能自定义…
初识 Spark 大数据处理,目前还只是小白阶段,初步搭建起运行环境,慢慢学习之. 本文熟悉下 Spark 数据处理的几个经典案例. 首先将 Scala SDK 的源码导入 IDEA,方便查看和调试代码,具体参考:intellij idea查看scala sdk的源代码 WordCount WordCount 号称大数据界的 HelloWorld,初识大数据代码,从 WordCount 开始,其基本流程图如下: 相关代码如下: import org.apache.spark.SparkConf…
ation算子通过sparkContext执行提交作业的runJob,触发rdd的DAG执行 (foreach) foreach(f) 会对rdd中的每个函数进行f操作,下面的f操作就是打印输出没有元素  saveAsTextFile 将rdd保存到hdfs指定的路径,将rdd中每一个分区保存到hdfs上的block saveAsObjectFile 将rdd中每10个元素组成一个array,然后将这个array序列化,映射为(null,bytesWritable(y)) 写入hdfs为Sequ…
iplocation需求 在互联网中,我们经常会见到城市热点图这样的报表数据,例如在百度统计中,会统计今年的热门旅游城市.热门报考学校等,会将这样的信息显示在热点图中. 因此,我们需要通过日志信息(运行商或者网站自己生成)和城市ip段信息来判断用户的ip段,统计热点经纬度. 练习数据 链接:https://pan.baidu.com/s/14IA1pzUWEnDK_VCH_LYRLw 提取码:pnwv package org.apache.spark import org.apache.spar…
1.collect算子 *使用foreachACTION操作 ,collect在远程集群中遍历RDD的元素 *使用collect操作,将分布式在远程集群中的数据拉取到本地 *这种方式不建议使用,如果数据量大,会使用大量 的网络带宽 *这种方式不建议使用. package kw.test.action; import java.util.Arrays; import java.util.Iterator; import java.util.List; import org.apache.spark…
一.Join原则 将条目少的表/子查询放在Join的左边.原因:在Join的reduce阶段,位于Join左边的表的内容会被加载进内存,条目少的表放在左边,可以减少发生内存溢出的几率. 小表关联大表:用MapJoin把小表全部加载到内存在map端Join,避免reducer处理.如: select /*+ MapJoin(user)*/ l.session_id,u.username from user u join page_views l on u.id = l.user_id 二.控制ma…
一.在聚合前在map端先预聚合 使用reduceByKey/aggregateByKey代替groupByKey 二.一次处理一个分区的数据,不过要注意一个分区里的数据不要太大,不然会报oom * 使用mapPartitions代替map * 使用foreachPartitions代替foreach 三.使用重分区 * 在过滤后使用算子coalesce(),避免过滤后可能产生的数据倾斜 四.对多次使用的rdd进行持久化,增加rdd的复用性. 每个rdd都会有一个血缘链,如果某个算子的上游rdd能…
释义 根据RDD中的某个属性进行分组,分组后形式为(k, [(k, v1), (k, v2), ...]),即groupBy 后组内元素会保留key值 方法签名如下: def groupBy[K](f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])] = withScope { ... } f: 分组操作.输入类型为T,操作过程为K,最后RDD形式为K, 迭代器(T)的形式,即同上所述形式 案例 查看每个科目有哪些学生选择 obj…