将SVM用于多类分类】的更多相关文章

源地址:http://www.blogjava.net/zhenandaci/archive/2009/03/26/262113.html 从 SVM的那几张图可以看出来,SVM是一种典型的两类分类器,即它只回答属于正类还是负类的问题.而现实中要解决的问题,往往是多类的问题(少部分例外,例如垃圾邮件过滤,就只需要确定“是”还是“不是”垃圾邮件),比如文本分类,比如数字识别.如何由两类分类器得到多类分类器,就是一个值得研究的问题. 还以文本分类为例,现成的方法有很多,其中一种一劳永逸的方法,就是真…
转自:http://www.lining0806.com/%E5%B0%86svm%E7%94%A8%E4%BA%8E%E5%A4%9A%E7%B1%BB%E5%88%86%E7%B1%BB/ SVM是一种典型的二类分类器,是采用最大间隔化策略来确定特征空间中最优超平面的,也就是说它只能回答属于正类还是负类的问题.而现实中要解决的往往是多类分类问题,如何将一个二类分类器转换成一个多类分类器呢? 一.一对多方法 比如有k个类别,每次分类都把1个类别作为正样本,其余k-1个类别作为负样本,依次类推.…
大多数分类器都是01分类器,如logistic regression.当我们要将数据分为多类的时候, 可以用一种叫one-vs-all的方法将01分类器用于多类分类(mult-class classification) 原理很简单,训练与类数(k)相同个数的分类器,每个分类器只判断每个item是否属于某个 特定的类.对新数据进行分类时,对它运行所有k个分类器,输出结果最大(是该类,且最自信) 的分类器分的类即为新数据的类啦.…
一对多(One-vs-Rest classifier) 将只能用于二分问题的分类(如Logistic回归.SVM)方法扩展到多类. 参考:http://www.cnblogs.com/CheeseZH/p/5265959.html “一对多”方法 训练时依次把某个类别的样本归为一类,其他剩余的样本归为另一类,这样k个类别的样 本就构造出了k个binary分类器.分类时将未知样本分类为具有最大分类函数值的那类. 假如我有四类要划分(也就是4个Label),他们是A.B.C.D. 于是我在抽取训练集…
从前面SVM学习中可以看出来,SVM是一种典型的两类分类器.而现实中要解决的问题,往往是多类的问题.如何由两类分类器得到多类分类器,就是一个值得研究的问题. 以文本分类为例,现成的方法有很多,其中一劳永逸的方法,就是真的一次性考虑所有样本,并求解一个多目标函数的优化问题,一次性得到多个分类面,就像下图这样: 多个超平面把空间划分为多个区域,每个区域对应一个类别,给一篇文章,看它落在哪个区域就知道了它的分类. 只可惜这种算法还基本停留在纸面上,因为一次性求解的方法计算量实在太大,大到无法实用的地步…
最近,本人要做个小东西,使用SVM对8类三维数据进行分类,搜索网上,发现大伙讨论的都是二维数据的二分类问题,遂决定自己研究一番.本人首先参考了opencv的tutorial,这也是二维数据的二分类问题.然后通过学习研究,发现别有洞天,遂实现之前的目标.在这里将代码贴出来,这里实现了对三维数据进行三类划分,以供大家相互学习. #include "stdafx.h" #include <iostream> #include <opencv2/core/core.hpp&g…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn GitHub Labeler ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态 API 最新的 控制台应用程序 .csv 文件 和 GitHub 问题 问题分类 多类分…
从 SVM的那几张图能够看出来,SVM是一种典型的两类分类器.即它仅仅回答属于正类还是负类的问题.而现实中要解决的问题,往往是多类的问题(少部分例外,比如垃圾邮件过滤,就仅仅须要确定"是"还是"不是"垃圾邮件).比方文本分类,比方数字识别.怎样由两类分类器得到多类分类器,就是一个值得研究的问题. 还以文本分类为例.现成的方法有非常多,当中一种一劳永逸的方法,就是真的一次性考虑全部样本,并求解一个多目标函数的优化问题,一次性得到多个分类面.就像下图这样: waterm…
SVM用于线性回归 方法分析 在样本数据集()中,不是简单的离散值,而是连续值.如在线性回归中,预测房价.与线性回归类型,目标函数是正则平方误差函数: 在SVM回归算法中,目的是训练出超平面,采用作为预测值.为了获得稀疏解,即计算超平面参数w,b不依靠所有样本数据,而是部分数据(如在SVM分类算法中,支持向量的定义),采用误差函数 误差函数定义为,如果预测值与真实值的差值小于阈值将不对此样本做惩罚,若超出阈值,惩罚量为. 下图为误差函数与平方误差函数的图形 目标函数 观察上述的误差函数的形式,可…
一. 前言 由于最近有一个邮件分类的工作需要完成,研究了一下基于SVM的垃圾邮件分类模型.参照这位作者的思路(https://blog.csdn.net/qq_40186809/article/details/88354825),使用trec06c这个公开的垃圾邮件语料库(https://plg.uwaterloo.ca/~gvcormac/treccorpus06/)作为数据进行建模.并对代码进行优化,提升训练速度. 工作过程如下: 1,数据预处理,提取每一封邮件的内容,进行分词,数据清洗.…