上一篇我们较为系统地介绍了Python与R在系统聚类上的方法和不同,明白人都能看出来用R进行系统聚类比Python要方便不少,但是光介绍方法是没用的,要经过实战来强化学习的过程,本文就基于R对2016年我国各主要城市第一.二.三产业GDP的量为三个不同特征,对这些城市进行系统聚类+分析: 数据来源:http://data.stats.gov.cn/easyquery.htm?cn=E0105 数据内容: 36个样本,3个变量,分别在三个xls文件中 分析目的: 为这些城市通过产业结构进行分类 实…
本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 我们在日常使用Python进行各种数据计算处理任务时,若想要获得明显的计算加速效果,最简单明了的方式就是想办法将默认运行在单个进程上的任务,扩展到使用多进程或多线程的方式执行. 而对于我们这些从事数据分析工作的人员而言,以最简单的方式实现等价的加速运算的效果尤为重要,从而避免将时间过多花费在编写程序上.而今天的文章费老师我就来带大家学习如何…
一.简介 马上大四了,最近在暑期实习,在数据挖掘的主业之外,也帮助同事做了很多网络数据采集的内容,接下来的数篇文章就将一一罗列出来,来续写几个月前开的这个网络数据采集实战的坑. 二.马蜂窝评论数据采集实战 2.1 数据要求 这次我们需要采集的数据是知名旅游网站马蜂窝下重庆区域内所有景点的用户评论数据,如下图所示: 思路是,先获取所有景点的poi ID,即每一个景点主页url地址中的唯一数字: 这一步和(数据科学学习手札33)基于Python的网络数据采集实战(1)中做法类似,即在下述界面: 翻页…
一.简介 Keras是有着自主的一套前端控制语法,后端基于tensorflow和theano的深度学习框架,因为其搭建神经网络简单快捷明了的语法风格,可以帮助使用者更快捷的搭建自己的神经网络,堪称深度学习框架中的sklearn,本文就将基于Keras,以手写数字数据集MNIST为演示数据,对多层感知机(MLP)的训练方法进行一个基本的介绍,而关于多层感知机的相关原理,请移步数据科学学习手札34:https://www.cnblogs.com/feffery/p/8996623.html,本文不再…
本文对应代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在上一篇文章中我们对geopandas中的数据结构展开了较为全面的学习,其中涉及到面积长度等计算的过程中提到了具体的计算结果与所选择的投影坐标系关系密切,投影坐标系选择的不恰当会带来计算结果的偏差,直接关乎整个分析过程的有效与否. 作为基于geopandas的空间数据分析系列文章的第二篇,通过本文你将会学习到geopandas中的坐标参考系管理.…
一.简介 接着几个月之前的(数据科学学习手札31)基于Python的网络数据采集(初级篇),在那篇文章中,我们介绍了关于网络爬虫的基础知识(基本的请求库,基本的解析库,CSS,正则表达式等),在那篇文章中我们只介绍了如何利用urllib.requests这样的请求库来将我们的程序模拟成一个请求网络服务的一端,来直接取得设置好的url地址中朴素的网页内容,再利用BeautifulSoup或pyspider这样的解析库来对获取的网页内容进行解析,在初级篇中我们也只了解到如何爬取静态网页,那是网络爬虫…
一.简介 我们在前面的数据科学学习手札34中也介绍过,作为最典型的神经网络,多层感知机(MLP)结构简单且规则,并且在隐层设计的足够完善时,可以拟合任意连续函数,而除了利用前面介绍的sklearn.neural_network中的MLP来实现多层感知机之外,利用tensorflow来实现MLP更加形象,使得使用者对要搭建的神经网络的结构有一个更加清醒的认识,本文就将对tensorflow搭建MLP模型的方法进行一个简单的介绍,并实现MNIST数据集的分类任务: 二.MNIST分类 作为数据挖掘工…
一.简介 关于正则表达式,我在前一篇(数据科学学习手札31)中已经做了详细介绍,本篇将对Python中自带模块re的常用功能进行总结: re作为Python中专为正则表达式相关功能做出支持的模块,提供了一系列方法来完成几乎全部类型的文本信息的处理工作,下面一一介绍: 二.re.compile() 在前一篇文章中我们使用过这个方法,它通过编译正则表达式参数,来返回一个目标对象的匹配模式,进而提高了正则表达式的效率,主要参数如下: pattern:输入的欲编译正则表达式,需将正则表达式包裹在''内传…
*从本篇开始所有文章的数据和代码都已上传至我的github仓库:https://github.com/CNFeffery/DataScienceStudyNotes 一.简介 pandas提供了很多方便简洁的方法,用于对单列.多列数据进行批量运算或分组聚合运算,熟悉这些方法后可极大地提升数据分析的效率,也会使得你的代码更加地优雅简洁,本文就将针对pandas中的map().apply().applymap().groupby().agg()等方法展开详细介绍,并结合实际例子帮助大家更好地理解它们…
一.简介 xpath作为对网页.对xml文件进行定位的工具,速度快,语法简洁明了,在网络爬虫解析内容的过程中起到很大的作用,除了xpath的基础用法之外(可参考我之前写的(数据科学学习手札50)基于Python的网络数据采集-selenium篇),xpath中还存在着非常之多的进阶用法,本文将对笔者日常使用中积累的xpath进阶用法进行总结并举例说明: 二.xpath进阶用法 本文以http://quotes.toscrape.com/示例页面,首先抓取网页源码并利用etree解析: impor…