最小总代价 状压DP】的更多相关文章

描述 n个人在做传递物品的游戏,编号为1-n. 游戏规则是这样的:开始时物品可以在任意一人手上,他可把物品传递给其他人中的任意一位:下一个人可以传递给未接过物品的任意一人. 即物品只能经过同一个人一次,而且每次传递过程都有一个代价:不同的人传给不同的人的代价值之间没有联系:求当物品经过所有n个人后,整个过程的总代价是多少. 格式 输入格式 第一行为n,表示共有n个人(16>=n>=2):以下为n*n的矩阵,第i+1行.第j列表示物品从编号为i的人传递到编号为j的人所花费的代价,特别的有第i+1…
看到这道题n只有16,就可以想到状压dp 每个人只有经过或者没经过,那就用1表示经过,0表示没经过 但是不是当前在谁那里,所以再加一维来记录 所以f[state][i]表示在物品在i,当前的状态是state情况下的最小总代价 有几个细节要注意 (1)刷表法.要提前初始化为-1,然后然后每个起点为0..做的时候要判断当前状态存不存在. (2)之前状态存在,当前这个人不存在才可以去做. #include<cstdio> #include<cstring> #include<alg…
题目链接:https://cn.vjudge.net/problem/HDU-1565 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem Description 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的和最大.   Input 包括多个测试实例,每…
BZOJ_1097_[POI2007]旅游景点atr_状压DP 题面描述: FGD想从成都去上海旅游.在旅途中他希望经过一些城市并在那里欣赏风景,品尝风味小吃或者做其他的有趣 的事情.经过这些城市的顺序不是完全随意的,比如说FGD不希望在刚吃过一顿大餐之后立刻去下一个城市登山, 而是希望去另外什么地方喝下午茶.幸运的是,FGD的旅程不是既定的,他可以在某些旅行方案之间进行选择.由于 FGD非常讨厌乘车的颠簸,他希望在满足他的要求的情况下,旅行的距离尽量短,这样他就有足够的精力来欣赏风 景或者是泡…
状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴. 为了更好的理解状压dp,首先介绍位运算相关的知识. 1.’&’符号,x&y,会将两个十进制数在二进制下进行与运算,然后返回其十进制下的值.例如3(11)&2(10)=2(10). 2.’|’符号,x|y,会将两个十进制数在二进制下进行或运算,然后返回其十进制下的值.例如3(11)|2(10)=3(11). 3.’^’符号,x^y…
题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中的宝藏.但是,每个宝藏屋距离地面都很远, 也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路 则相对容易很多. 小明的决心感动了考古挖掘的赞助商,赞助商决定免费赞助他打通一条从地面到某 个宝藏屋的通道,通往哪个宝藏屋则由小明来决定. 在此基础上,小明还需要考虑如何开凿宝藏屋之间的道路.…
[NOIP2017]宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中的宝藏.但是,每个宝藏屋距离地面都很远, 也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路 则相对容易很多. 小明的决心感动了考古挖掘的赞助商,赞助商决定免费赞助他打通一条从地面到某 个宝藏屋的通道,通往哪个宝藏屋则由小明来决定. 在此基础上,小明还需要考虑…
NOIP2017 宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中的宝藏.但是,每个宝藏屋距离地面都很远, 也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路 则相对容易很多. 小明的决心感动了考古挖掘的赞助商,赞助商决定免费赞助他打通一条从地面到某 个宝藏屋的通道,通往哪个宝藏屋则由小明来决定. 在此基础上,小明还需要考虑如…
之前写了一份此题关于模拟退火的方法,现在来补充一下状压dp的方法. 其实直接在dfs中状压比较好想,而且实现也很简单,但是网上有人说这种方法是错的...并不知道哪错了,但是就不写了,找了一个正解. 正解的区别在于状态,(树高是啥意思),每次都是从当前状态的子集转移过来.这里用到了快速枚举子集的操作,很值得写一下. 题干: 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 nnn 个深埋在地下的宝藏屋, 也给出了这 nnn 个宝藏屋之间可供开发的m mm 条道路和它们的长度. 小明决心…
链接 : Here! 思路 : 状压DP. 开始想直接爆搜, T掉了, 然后就采用了状压DP的方法来做. 定义$f[S]$为集合$S$的最小代价, $dis[i]$则记录第$i$个点的"深度", 所以说边$E{[i, j]}$ 的工程代价就为$dis[i] * E{[i, j]}$, 因此可以得到状态转移方程 : 初始状态(假设以$i$作为起点) : $dis[i] = 1$, $f[1 << (i - 1)] = 0$, $dis[k] = INF (k != i, k…