Python pandas快速入门2017年03月14日 17:17:52 青盏 阅读数:14292 标签: python numpy 数据分析 更多 个人分类: machine learning 来自官网十分钟教学 Pandas的主要数据结构:DimensionsNameDescription1Series1D labeled homogeneously-typed array2DataFrameGeneral 2D labeled, size-mutable tabular structur…
记性不好,多记录些常用的东西,真·持续更新中::先列出一些常用的网址: 参考了的 莫烦python pandas DOC numpy DOC matplotlib 常用 习惯上我们如此导入: import pandas as pd import numpy as np import maplotlib.pyplot as plt pandas 篇 pd.Series是一种一维的数组结构,可以列表形式初始化,得到的Series的index默认∈[0,n) s = pd.Series([1, 3,…
在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章<别老扯什么Hadoop了,你的数据根本不够大>指出:只有在超过5TB数据量的规模下,Hadoop才是一个合理的技术选择.这次拿到近亿条日志数据,千万级数据已经是关系型数据库的查询分析瓶颈,之前使用过Hadoop对大量文本进行分类,这次决定采用Python来处理数据: 硬件环境 CPU:3.5 GHz Intel Core i7 内存:32 GB HDDR 3 1600 MHz 硬盘:3 TB Fusion Drive 数据分析…
数据规整化:合并.清理.过滤 pandas和python标准库提供了一整套高级.灵活的.高效的核心函数和算法将数据规整化为你想要的形式! 本篇博客主要介绍: 合并数据集:.merge()..concat()等方法,类似于SQL或其他关系型数据库的连接操作. 合并数据集 1) merge 函数 merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=Fal…
# python pandas合并多个excel(xls和xlsx)文件(弹窗选择文件夹和保存文件) import tkinter as tk from tkinter import filedialog import os import pandas as pd import glob root = tk.Tk() root.withdraw() # 选择文件夹位置 filelocation = os.path.normpath(filedialog.askdirectory(initiald…
Python&pandas与mysql连接 1.python 与mysql 连接及操作,直接上代码,简单直接高效: import MySQLdb try: conn = MySQLdb.connect(host='localhost',user='root',passwd='×××××',db='test',charset='utf8') cur = conn.cursor() cur.execute('create table user(id int,name varchar(20))' )…
之前在做python pandas大数据分析的时候,在将分析后的数据存入mysql的时候报ERROR 2006 (HY000): MySQL server has gone away 原因分析:在对百万数据进行分析的时候,由于分析逻辑有点复杂,导致消耗的时候有点多,触发了mysql connect_timeout机制,当分析结束后想把结果存入mysql的时候,连接早已经断开了. 解决方案:针对一些复杂的数据分析,将数据分片处理,并在每次执行mysql插入的时候判断连接是否断开(connectio…
Python+Pandas 读取Oracle数据库 import pandas as pd from sqlalchemy import create_engine import cx_Oracle db=cx_Oracle.connect('userid','password','10.10.1.10:1521/dbinstance') print (db.version) cr=db.cursor() sql='select * from sys_user' cr.execute(sql)…
看到篇博文,https://blog.csdn.net/young2415/article/details/82795688 需求是需要统计部门礼品数量,自己简单绘制了个表格,如下: 大意是,每个部门的员工发福利,有礼品档次(见表一),每个档次礼品对应不同礼品(见表二) 假设表一在test.xlsx的sheet1中,表二在test.xlsx的sheet2中,运算结果为同级目录下的result.xlsx,用python pandas改写代码如下: import pandas as pd df1 =…
python. pandas(series,dataframe,index,reindex,csv file read and write) method test import pandas as pdimport numpy as np def testpandas(): p = pd.Series([1,2,3,4,5],index =('a','b','c','d','e')) print(p) cities = {'bejing':5500,'shanghai':5999,'shezh…