HDU 3853 期望概率DP】的更多相关文章

期望概率DP简单题 从[1,1]点走到[r,c]点,每走一步的代价为2 给出每一个点走相邻位置的概率,共3中方向,不动: [x,y]->[x][y]=p[x][y][0] ,  右移:[x][y]->[x][y+1]=p[x][y][1];  左移:[x][y]->[x+1][y]=p[x][y][2]; 问最后走到[r,c]的期望 dp[i][j]为从[i][j]点走到[r][c]的期望 有方程: dp[i][j]=    (dp[i][j]+2)*p[i][j][0]  +   (d…
简单的概率DP入门题 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include<iomanip> #include<cmath> #include<cstring> #include<vector> #define ll __int64 #define pi acos(-1.0) #define MAX 1003 using namesp…
LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Total Submission(s): 8453    Accepted Submission(s): 3397 Problem Description Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl). Homura wants to help h…
D - LOOPS Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Description Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl). Homura wants to help her friend Madoka save the world. But because of the plot…
题目链接 LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Total Submission(s): 2630    Accepted Submission(s): 1081 Problem Description Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl). Homura wants to h…
题意:就是让你从(1,1)走到(r, c)而且每走一格要花2的能量,有三种走法:1,停住.2,向下走一格.3,向右走一格.问在一个网格中所花的期望值. 首先:先把推导动态规划的基本步骤给出来. · 1.设变量:(注意:设置变量时,要能够使整个求解过程可以分为多个阶段.) 2.分析阶段决策,并写出决策函数.(也就是能体现前阶段决策后阶段关系的函数) 3.写出指标函数.(也是就是我们得出解的函数.) 先第一步:设置变量,我们分析这个题的是从(1,1)到(r, c)那么什么能体现“阶段”这个词的东西呢…
并不难,只是和期望概率dp结合了一下.稍作推断就可以发现加密与不加密是两个互相独立的问题,这个时候我们分开算就好了.对于加密,我们按位统计和就好了;对于不加密,我们先假设所有数都找到了他能找到的最好的匹配(就是异或后为二进制最高位与n-1相等的最大数)并且算出其异或后的总和,然后我们按位贪心,带着所有的数(一开始我们假设所有的数是小于等于二进制最高位与n-1相等的最大数的所有数)从高位走向低位,每走一步,如果这一位是0,就会导致一半的数在这一位不能是1,减去这一半的数在这一位上的贡献,如果这一位…
大力观察:I.从输出精准位数的约束来观察,一定会有猫腻,然后仔细想一想,就会发现输出的时候小数点后面不是.5就是没有 II.从最后答案小于2^63可以看出当k大于等于3的时候就可以直接搜索了 期望概率dp:对于k=1的时候,把所有存在的位乘0.5就行了,对于k=2的时候就可以用类似推反演的方法(转换枚举顺序之类的)退出来一个式子,然后你只需要求个概率(很好推,也很好求)就可以啦 线性基:搜索之前还有dp之前预处理用的(只是构造一下) 然而我的做法却是,先求出线性基,再用期望概率dp(类似OSU!…
这是一道比较水的期望概率dp但是考场想歪了.......我们可以发现奇数一定是不能掉下来的,因为若奇数掉下来那么上一次偶数一定不会好好待着,那么我们考虑,一个点掉下来一定是有h/2-1个红(黑),h/2+1个黑(红),而且一定是差不多相间的(我就是因为没有看出来这里才会去想组合数,然后......),那么我们发现只要一奇一偶,就可以组成一对,因为偶数一定是平的因此,我们发现在掉下来的那对之前都是红黑或黑红,但是到了这里就是红红或黑黑了,我们只要求出(异色的概率)^(h/2-1)*(同色的概率)就…
首先这道题让我回忆了一下最短路算法,所以我在此做一个总结: 带权: Floyed:O(n3) SPFA:O(n+m),这是平均复杂度实际上为O(玄学) Dijkstra:O(n+2m),堆优化以后 因此,稀疏图:SPFA或 Dijkstra可以再大约O(n2)左右的时间跑完每个点到每个点的最短路 稠密图:啥也别说 Floyed 不带权(边权为1):SPFA=Dijkstra(堆优化)=BFS=O(n+2m) ,这个是真的差距只有常数 Floyed:O(n3) 因此,同上 从这个题我得出来一点期望…