洛谷P1242 新汉诺塔 最开始的思路是贪心地将盘子从大到小依次从初始位置移动到目标位置. 方法和基本的汉诺塔问题的方法一样,对于盘子 \(i\) ,将盘子 \(1\to i-1\) 放置到中间柱子上,即 \(6 - from - to\) 号柱子.基本递归实现. 但是贪心的优先将大盘移动到指定位置存在一些特殊情况处理错误. 例如如下数据,最优的方案并不是把大盘一步移到位,而是先移到了一根空柱上. 3 1 3 0 2 2 1 2 2 1 0 1 3 move 3 from A to B move…
原题链接 题目描述 设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号.将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A.B.C,这个状态称为初始状态. 现在要求找到一种步数最少的移动方案,使得从初始状态转变为目标状态. 移动时有如下要求: ·一次只能移一个盘: ·不允许把大盘移到小盘上面. 输入输出格式 输入格式: 文件第一行是状态中圆盘总数: 第二到第四行分别是初始状态中A.B.C柱上圆盘的个数和从上到下每个圆盘的编号: 第五到第七行分别是目标状态中A.B.C柱上圆盘的个数和从上…
题目描述 设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号.将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A.B.C,这个状态称为初始状态. 现在要求找到一种步数最少的移动方案,使得从初始状态转变为目标状态. 移动时有如下要求: ·一次只能移一个盘: ·不允许把大盘移到小盘上面. 输入输出格式 输入格式: 文件第一行是状态中圆盘总数: 第二到第四行分别是初始状态中A.B.C柱上圆盘的个数和从上到下每个圆盘的编号: 第五到第七行分别是目标状态中A.B.C柱上圆盘的个数和从上到下每个圆…
传送门啦 首先要将第n个盘子从x到y,那么就要把比n小的盘子全部移到6-x-y,然后将n移到y 仔细想想:6代表的是3根初始柱,3根目标柱. 6-(x+y) 便是我们的中转柱了,因为到这个位置是最优的. 感觉题目有锅啊. #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int maxn = 55;…
题目链接:传送门 题目大意: 汉诺塔,给定n个盘子(n <= 45),起始状态和结束状态,求最小的步数以及路径. 思路: 考虑用dfs贪心地将剩余最大盘归位. #include<bits/stdc++.h> using namespace std; ; ; int N, ans; int f1[MAX_N], f2[MAX_N]; void dfs(int cur, int st, int ed, bool now) { int mid = SUM - st - ed; if (st =…
汉诺塔(BZOJ) P4285 [SHOI2008]汉诺塔 居然是省选题,还是DP!(我的DP菜得要死,碰见就丢分) 冥思苦想了1h+ \(\to\) ?! 就是普通的hanoi NOI or HNOI? DP加上一个乱搞的数组,然后我还写反了一次,就gg了. 大概思路: \(dp_{i,j}\)表示从柱子i移动j个盘子的最优解,\(f_{i,j}\) 表示从柱子i移动j个盘子到哪个柱子最优.然后就可以转移了! 先把i-1个盘子从x移到 \(y=f_{x,i-1}\) ,设另一根为z,然后分类:…
这道题加深了hanio的理解 如果我们要移动第n个盘子.那么就是说,n+1以后(包括n+1)的盘子都已经到位了 #include<iostream> #include<cstdio> using namespace std; int no[4]; int ai[4]; int aim[50]; int pla[50]; long long ans; void move(int num,int f,int t) { ans+=1; printf("move %d from…
题目描述 设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号.将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A.B.C,这个状态称为初始状态. 现在要求找到一种步数最少的移动方案,使得从初始状态转变为目标状态. 移动时有如下要求: ·一次只能移一个盘: ·不允许把大盘移到小盘上面. 输入输出格式 输入格式: 文件第一行是状态中圆盘总数: 第二到第四行分别是初始状态中A.B.C柱上圆盘的个数和从上到下每个圆盘的编号: 第五到第七行分别是目标状态中A.B.C柱上圆盘的个数和从上到下每个圆…
汉诺塔(又称河内塔)问题其实是印度的一个古老的传说. 开天辟地的神勃拉玛(和中国的盘古差不多的神吧)在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一 个小,依次叠上去,庙里的众僧不倦地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为帮助,但每次只能搬一个,而且大的不能放在小的上 面.计算结果非常恐怖(移动圆片的次数)18446744073709551615,众僧们即便是耗尽毕生精力也不可能完成金片的移动了. 算法介绍:其实算法非常简单,…
一.问题背景 汉诺塔问题是源于印度一个古老传说. 源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘. 简单来说目的就是要我们把盘子按照规则从A移到C 二.思路 此处我用递归的思想理解汉诺塔问题.递归的思想容易理解,但是运用在代码上的算法并不是解决汉诺塔问题的最佳算法. 我们初定有n个盘子,…