NOIP 2017 宝藏 - 动态规划】的更多相关文章

题目传送门 传送门 题目大意 (家喻户晓的题目不需要题目大意) 设$f_{d, s}$表示当前树的深度为$d$,与第一个打通的点连通的点集为$s$. 每次转移的时候不考虑实际的深度,深度都当做$d$,寻找连接两个点集最小边集,如果能连接更浅的点,那么会在之前转移,所以即使转移非法也不可能成为最优解. 找连接两个点集的最小边集合可以预处理. 我比较懒,不想预处理,时间复杂度$O(n^{2}3^{n})$. Code /** * uoj * Problem#333 * Accepted * Time…
Description 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中的宝藏.但是,每个宝藏屋距离地面都很远, 也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路 则相对容易很多. 小明的决心感动了考古挖掘的赞助商,赞助商决定免费赞助他打通一条从地面到某 个宝藏屋的通道,通往哪个宝藏屋则由小明来决定. 在此基础上,小明还需要考虑如何开凿宝藏…
参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 \(n\) 个深埋在地下的宝藏屋, 也给出了这 \(n\) 个宝藏屋之间可供开发的 \(m\) 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中的宝藏.但是,每个宝藏屋距离地面都很远, 也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路 则相对容易很多. 小明的决心感动了考古挖掘的赞助商,赞助商决定免费赞助他打通一条从地面到某 个宝藏屋的通道,通往哪个宝藏屋则由小明来决定. 在此基础上,小明还需要考虑如何开凿宝藏…
Noip 2008 :全部 Noip 2009 :全部 Noip 2010 :AK Noip 2011 :AK Noip 2012 : Vigenère 密码,国王游戏,开车旅行 Noip 2013 :华容道 Noip 2014 :解方程 Noip 2015 :神奇的幻方,斗地主,运输计划 Noip 2016 :天天爱跑步,愤怒的小鸟 Noip 2017 :宝藏 总共:22道…
Luogu 1060 开心的金明 / NOIP 2006 (动态规划) Description 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:"你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行".今天一早金明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的N元.于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要.他还从因特网上查到了每件物品的价格(都是整数元).他希…
---恢复内容开始--- NOIP 2017 的题真的很难啊,怪不得当年我这个萌新爆零了(当然现在也是萌新)越学越觉得自己什么都不会. 想要成为强者要把这些好题都弄懂弄透 至少现在6道题我都比较陌生 都是以前写的现在再复习一遍吧. Day1 T1 这是哪门子题啊好难 怎么算啊 好了我感觉我要爆零了..很难拿分. 考虑暴力 考虑我眼看可以看出答案<=a*b 也就是两数的最大公约数当然这也是猜结论然后在这个范围内枚举某个数字看其能否被拼成我们只需枚举其中一个看看另一个...检验一下就好了期望得分30…
题目传送门 传送点I 传送点II 题目大意 (家喻户晓的题目应该不需要大意) (我之前咋把NOIP 2017打成了NOIP 2018,好绝望) Solution 1 Splay 每行一颗Splay,没有动过的地方直接一段一个点. 最后一列单独一颗Splay. 暴力模拟即可. Soluion 2 Splay II 我们考虑倒推.对于每个询问倒推出在第一次操作前时的位置. 考虑每个出队操作对答案的影响. 假设询问$(x, y)$,那么最后一列横坐标大于等于$x$的位置,横坐标都会加1. 第$x$行,…
时间:2017.11.11~2017.11.12 地点:广东省广州市第六中学 Day1 T1:看到题目,心想这种题目也能放在T1? 这个结论我之前遇到过至少3次,自己也简单证明过.初见是NOIP2005 过河. 结论是两个互素正整数a,b可以组合出>(a-1)*(b-1)的所有数字. 原理也很简单,考虑大的数字x去填补小的数字y的空隙,x每翻一倍可以填一个不同的余数(因为互素),翻y-1倍刚好填补y-1个余数,但是填补最后一个余数的时候可以往前延伸到(x-1)*(y-1)都是填补完毕的,所以得证…
# NOIP 2017 小凯的疑惑 思路 a,b 互质 求最大不能表示出来的数k 则k与 a,b 互质 这里有一个结论:(网上有证明)不过我是打表找的规律 若 x,y(设x<y) 互质 则 : \(nx\equiv\)a (mod y)若将x依次加倍则可以得 nx mod y|ans ---|---| x| a | 2x| 2a mod y 3x|3a mod y| 4x |4a mod y| ...|...| yx|ya mod y| 这时a的值刚好把 0 ~ y-1内的所有数字都遍历了一遍.…
题目大意:给定一个 $n times m$ 的方阵,初始时第 $i$ 行第 $j$ 列的人的编号为 $(i-1) times m + j$,$q$ 次给出 $x,y$,让第 $x$ 行 $y$ 列的人出队,然后其他人先向左看齐,后向前看齐,再把出队的人放在第 $n$ 行 $m$ 列,请你输出每次出队的人的编号.$n,m,q leq 3 times 10^5$ 对于 $n,m leq 50000, q leq 500$ 的数据,可以离散化,但是不能用 map,因为 map 的所有操作都是带 log…