吴恩达(Andrew Ng)机器学习课程:课程主页 由于博客编辑器有些不顺手,所有的课程笔记将全部以手写照片形式上传.有机会将在之后上传课程中各个ML算法实现的Octave版本. Linear Regression with One Variable Linear Algebra Review Linear Regression with Multiple Variables Octave/Matlab Tutorial…
Support Vector Machines Unsupervised Learning Dimensionality Reduction…
Neural Networks: Learning Advice for Applying Machine Learning Machine Learning System Design…
Anomaly Detection Recommender Systems Large Scale Machine Learning…
Logistic Regression Regularization Neural Networks: Representation…
参考资料: 吴恩达教授机器学习课程 机器学习课程中文笔记 Week2 一. 多变量线性回归(Linear Regression with Multiple Variables) 多变量就时当一个example里有n个特征的情况,将n个特征统一到一个matrix里去看作整体. 多变量线性回归还是先出cost function,然后用梯度下降算法/正规方程法使cost function最小化 特征的选择 多变量线性回归中有很多特征,选择合适的特征很重要,下面是常见的可用特征: training se…
参考资料: 吴恩达教授机器学习课程 机器学习课程中文笔记 Week 1 一. 引言 机器学习模型可分为监督学习Superviese learning(每个数据集给出了正确的值)和无监督学习Unsupervised learning(数据集只有特征,没有对应正确的值) 机器学习处理的问题可以分为Regression回归问题(结果是real-valued output连续的值)和Classification问题 (结果是discrete-valued离散的值) 二. 单变量线性回归(Linear R…
Week 1 机器学习笔记(一)基本概念与单变量线性回归 Week 2   机器学习笔记(二)多元线性回归 机器学习作业(一)线性回归——Matlab实现 机器学习作业(一)线性回归——Python(numpy)实现 Week 3   机器学习笔记(三)逻辑回归 机器学习作业(二)逻辑回归——Matlab实现 机器学习作业(二)逻辑回归——Python(numpy)实现 Week 4   机器学习笔记(四)神经网络的基本概念 机器学习作业(三)多类别分类与神经网络——Matlab实现 机器学习作…
主要内容: 一.Batch Norm简介 二.归一化网络的激活函数 三.Batch Norm拟合进神经网络 四.测试时的Batch Norm 一.Batch Norm简介 1.在机器学习中,我们一般会对输入数据进行归一化处理,使得各个特征的数值规模处于同一个量级,有助于加速梯度下降的收敛过程. 2.在深层神经网络中,容易出现梯度小时或者梯度爆炸的情况,导致训练速度慢.那么,除了对输入数据X进行归一化之外,我们是否还可以对隐藏层的输出值进行归一化,从而加速梯度下降的收敛速度呢?答案是可以的. 3.…
隐藏前缀提示符:PS1('>>') 不显示打印内容:;结尾 字符串:a=’hi’ 屏幕输出:disp(sprint(‘2 decimals:%0.2f’,a)) 生成集合(矩阵):V=1:0.1:2 V=1:6 生成矩阵:ones(2,3)%全1 zeros(2,3)%全0 rand(2,3)%随机0~1之间 eye(6)%单位矩阵 绘制直方图:hist(W) 矩阵维度:size(A) size(A,1)%第一个维度,即行数 size(A,2)%第二个维度,即列数 length(A)%矩阵最大…