Bzoj3481 DZY Loves Math III】的更多相关文章

考虑对于每一个x有多少个合法解.得到ax+by=c形式的方程.如果gcd(x,y)|c,则a在0~y-1范围内的解的个数为gcd(x,y).也就是说现在所要求的是Σ[gcd(x,P)|Q]*gcd(x,P). 对这个式子套路地枚举gcd,可以得到Σdφ(P/d) (d|gcd(P,Q)).质因子间相互独立,考虑每个质因子的贡献再累乘.如果d取完了P的某项质因子,那么该质因子的贡献为piqi,否则为(pi-1)piqi-1.于是rho分解完质因数就可以算了. 注意特判Q=0. #include<i…
Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 310  Solved: 65 Description Input Output Sample Input 3 1 2 3 2 4 2 Sample Output 6 HINT 1<=N<=10,0<=Qi<=10^18,1<=Pi<=10^18,P>=2 本题仅四组数据. Source By Jc 数学问题 欧拉函数 Miller-Rabin Pollard-rho 花了…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3481 推推式子发现:令Q=gcd(P,Q),ans=Σ(d|Q) d*phi(P/d).把 d 质因数分解,设 t 为 Q 的指数, w 为 P 的指数,ans变成每个质数的 Σ(i=0~t) p^i * phi( p^(w-i) ) 连乘. 分解质因数用 Pollar Rho . 注意 Q=0 就是 Q=P,要特判!而且不要以为答案变成  (!x || !y) 了! d从0到P-1 就是…
link 好久没写数学题了,再这样下去吃枣药丸啊. 找一套应该还比较有意思的数学题来做. [bzoj3309]DZY Loves Math 简单推一下. \[\sum_{i=1}^n\sum_{j=1}^mf(\gcd(i,j))\\=\sum_{d=1}^nf(d)\sum_{i=1}^{n/d}\mu(i)\frac n{id}\frac m{id}\\=\sum_{T=1}^n\frac nT\frac mT\sum_{d|T}f(d)\mu(\frac Td)\] 令\(h(T)=\su…
BZOJ 3309: DZY Loves Math I 题意 \(f(n)\) 为 \(n\) 幂指数的最大值. \[ \sum_{i = 1}^{a} \sum_{j = 1}^{b} f(\gcd(i, j)) \] \(T\le 10000, 1 \le a,b \le 10^7\) 题解 \[ \begin{aligned} ans &= \sum_{i = 1}^{a} \sum_{j = 1}^{b} f(\gcd(i, j)) \\ &= \sum_{d = 1}^{\min…
3309: DZY Loves Math Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 761  Solved: 401[Submit][Status][Discuss] Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0.给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1.…
3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b). Input 第一行一个数T,表示询问数. 接下来T行,每行两个数a,b,表示一个询问. Output 对于每一个询问,输出一行一个非负整数作为回答. Sample In…
(14.10.28改) 本来只想写BZOJ3739:DZY Loves Math VIII的,不过因为和VI有关系,而且也没别人写过VI的题解,那么写下. 不过我还不会插公式…… http://www.lydsy.com/JudgeOnline/problem.php?id=3561 想想还是要把代码放一下的,不然可能一辈子都不会写了= = 为什么那么像FancyCoder写的呢……因为这题本来就是他教我哒……读入优化快速筛甚至快速幂的模板都是他的= = 额Mobius反演系列问题的入门也是看J…
3512: DZY Loves Math IV 题意:求\(\sum_{i=1}^n \sum_{j=1}^m \varphi(ij)\),\(n \le 10^5, m \le 10^9\) n较小,考虑写成前缀和的形式,计算\(S(n,m)=\sum_{i=1}^m \varphi(in)\) 一开始想出 \[ n= \prod_i p_i,\ \varphi(in) = \varphi(i) \cdot \varphi(\frac{n}{d})\cdot d,\ d=(n,i) \] 比较…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))$ $\quad\quad=\sum_{g=1}^{n}f(g)\sum_{d=1}^{\lfloor \frac{n}{g} \rfloor} \mu(d)\lfloor \frac{n}{gd} \rfloor\lfloo…