运用TensorFlow处理简单的NLP问题】的更多相关文章

当前无论是学术界还是工业界,深度学习都受到极大的追捧,尤其是在Google开源深度学习平台TensorFlow之后,更是给深度学习火上浇油.目前在开源社区Github上所有开源项目中,TensorFlow最为活跃,从推出到现在,经历了几个版本的演进,可以说能够灵活高效地解决大量实际问题.本文主要尝试阐述TensorFlow在自然语言处理(NLP)领域的简单应用,让大家伙儿更加感性地认识TensorFlow. 说到NLP,其实我对它并不是很熟悉,之前也未曾有过NLP的相关经验,本文是我最近学习Te…
一.机器学习基本概念 1.训练集和测试集 训练集(training set/data)/训练样例(training examples): 用来进行训练,也就是产生模型或者算法的数据集 测试集(testing set/data)/测试样例 (testing examples):用来专门进行测试已经学习好的模型或者算法的数据集 2.特征向量 特征向量(features/feature vector):属性的集合,通常用一个向量来表示,附属于一个实例 3.分类问题和回归问题 分类 (classific…
TensorFlow运行方式.加载数据.定义超参数,构建网络,训练模型,评估模型.预测. 构造一个满足一元二次函数y=ax^2+b原始数据,构建最简单神经网络,包含输入层.隐藏层.输出层.TensorFlow学习隐藏层.输出层weights.biases.观察训练次数增加,损失值变化. 生成.加载数据.方程y=x^2-0.5.构造满足方程的x.y.加入不满足方程噪声点. import tensor flow as tf import bumpy as np # 构造满中一元二次方程的函数 x_d…
1.官网及帮助文档 官网: https://www.tensorflow.org/install/install_windows 中文帮助文档:https://efeiefei.gitbooks.io/tensorflow_documents_zh/install/install_windows.html a) cpu版本安装:pip3 install --upgrade tensorflow 上面试默认安装最新版本的tensorflow,如果想安装指定版本的tensorflow,如1.4.0,…
TensorFlow 可以用来实现验证码识别的过程,这里识别的验证码是图形验证码,首先用标注好的数据来训练一个模型,然后再用模型来实现这个验证码的识别. 生成验证码 首先生成验证码,这里使用 Python 的 captcha 库来生成即可,这个库默认是没有安装的,所以需要先安装这个库,另外还需要安装 pillow 库,使用 pip3 即可: pip3 install captcha pillow 安装好之后,就可以用如下代码来生成一个简单的图形验证码了: from captcha.image i…
https://medium.com/towards-data-science/lstm-by-example-using-tensorflow-feb0c1968537 在深度学习中,循环神经网络(RNN)是一系列善于从序列数据中学习的神经网络.由于对长期依赖问题的鲁棒性,长短期记忆(LSTM)是一类已经有实际应用的循环神经网络.现在已有大量关于 LSTM 的文章和文献,其中推荐如下两篇: Goodfellow et.al.<深度学习>一书第十章:http://www.deeplearnin…
对抗网络是14年Goodfellow Ian在论文Generative Adversarial Nets中提出来的. 原理方面,对抗网络可以简单归纳为一个生成器(generator)和一个判断器(discriminator)之间博弈的过程.整个网络训练的过程中, 两个模块的分工 判断网络,直观来看就是一个简单的神经网络结构,输入就是一副图像,输出就是一个概率值,用于判断真假使用(概率值大于0.5那就是真,小于0.5那就是假) 生成网络,同样也可以看成是一个神经网络模型,输入是一组随机数Z,输出是…
原文作者:aircraft 原文地址:https://www.cnblogs.com/DOMLX/p/8954892.html 参考博客:https://blog.csdn.net/u012871279/article/details/78037984 https://blog.csdn.net/u014380165/article/details/77284921 目前人工智能神经网络已经成为非常火的一门技术,今天就用tensorflow来实现神经网络的第一块敲门砖. 首先先分模块解释代码.…
本节将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价. 波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/boston处获取. 本小节直接从 TensorFlow contrib 数据集加载数据.使用随机梯度下降优化器优化单个训练样本的系数. 实现简单线性回归的具体做法 导入需要的所有软件包: 在神经网络中,所有的输入都线性增加.为了使训练有效,输入应该被归一化,所以这里定义一个函数来归一化输入数据: 现在使…
import tensorflow as tf c1 = tf.constant([[3,3]]) c2 = tf.constant([[3],[2]]) product = tf.matmul(c1 , c2) print(product) 输出结果  Tensor("MatMul_1:0", shape=(1, 1), dtype=int32) sess = tf.Session() reslut = sess.run(product) print(reslut) 输出结果   […