python-蒙特·卡罗法计算圆周率】的更多相关文章

蒙特·卡罗方法是一种通过概率来得到问题近似解的方法,在很多领域都有重要的应用,其中就包括圆周率近似值的计问题. 假设有一块边长为2的正方形木板,上面画一个单位圆,然后随意往木板上扔飞镖,落点坐标(x,y)必然在木板上(更多的时候是落在单位圆内), 如果扔的次数足够多,那么落在单位圆内的次数除以总次数再乘以4,这个数字会无限逼近圆周率的值. 这就是蒙特·卡罗发明的用于计算圆周率近似值的方法. 编写程序,模拟蒙特·卡罗计算圆周率近似值的方法,输入掷飞镖次数,然后输出圆周率近似值. import ra…
[题目描述]蒙特·卡罗方法是一种通过概率来得到问题近似解的方法,在很多领域都有重要的应用,其中就包括圆周率近似值的计问题.假设有一块边长为2的正方形木板,上面画一个单位圆,然后随意往木板上扔飞镖,落点坐标(x,y)必然在木板上(更多的时候是落在单位圆内),如果扔的次数足够多,那么落在单位圆内的次数除以总次数再乘以4,这个数字会无限逼近圆周率的值.这就是蒙特·卡罗发明的用于计算圆周率近似值的方法,如下图所示.编写程序,模拟蒙特·卡罗计算圆周率近似值的方法,输入掷飞镖次数,然后输出圆周率近似值. […
一.分支结构 单分支结构 if 一般用于判断选择 score = 95 if score > 90: print('优秀') 双分支结构 if...else age = 20 if age >= 18: print('成年') else: print('未成年') 三目运算 age = 19 print('成年') if age >=18 else print('未成年') # 只有双分支有这种写法 if...elif...elif...else 与 if...if...if...els…
一 背景 此算法诞生的背景是: 曼哈顿计划,有极大的计算需求. 计算机刚开始发展,最适合做计算. 蒙特卡洛算法理论基础是概率论,实际就是暴力计算逼近理想结果.正是在以上两个背景下,它刚好得到了极大的应用和发展. 二 概念 蒙特·卡罗算法,也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法.是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法.与它对应的是确定性算法.蒙特·卡罗方法在金融工程学,宏观经…
一.要求: 1.计算到圆周率后面越多位越好. 2.用进度条显示计算的进度. 3.要求给出圆周率Π的具体计算方法和解释. 二.算法: 1.拉马努金公式: 2.高斯-勒让德公式: 设置初始值: 反复执行以下步骤直到    与   之间的误差到达所需精度: 则π的近似值为: 下面给出前三个迭代结果(近似值精确到第一个错误的位数): 3.140... 3.14159264... 3.1415926535897932382... 该算法具有二阶收敛性,本质上说就是算法每执行一步正确位数就会加倍. 3.波尔…
Python实现计算圆周率π的值到任意位的方法示例 本文实例讲述了Python实现计算圆周率π的值到任意位的方法.分享给大家供大家参考,具体如下: 一.需求分析 输入想要计算到小数点后的位数,计算圆周率π的值. 二.算法:马青公式 π/4=4arctan1/5-arctan1/239 这个公式由英国天文学教授约翰·马青于1706年发现.他利用这个公式计算到了100位的圆周率.马青公式每计算一项可以得到1.4位的十进制精度.因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上…
1.蒙特卡洛求圆周率 向区域内随即撒点 当点的数目足够多时,落在圆的点数目与在正方形点数目成正比 即圆的面积和正方形的面积成正比 可以得出计算圆周率的算法 DARTS=100000000   hits=0.0   clock()   for i in range(1,DARTS+1):       x,y=random(),random()       dist=sqrt(x**2+y**2)       if dist <=1.0:           hits=hits+1   pi=4*(…
0-故事: 蒙特卡罗方法是计算模拟的基础,其名字来源于世界著名的赌城——摩纳哥的蒙特卡罗. 蒙特卡罗一词来源于意大利语,是为了纪念王子摩纳哥查理三世.蒙特卡罗(MonteCarlo)虽然是个赌城,但很小,估计跟北京的一条街差不多大. 其思想来源于著名的蒲丰投针问题(提出用投针实验的方法求圆周率π).而后20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼(计算机之父)首先提出了这一方法. 蒲丰投针: 1777年法国科学家蒲丰提出了下述著名问题:…
蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法.是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法.与它对应的是确定性算法. 这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆.冯.诺依曼.费米.费曼.Nicholas Metropolis,在美国洛斯阿拉莫斯国家实验室研究裂变物质的中子连锁反…
本文从以下四个方面,介绍用Python实现熵值法确定权重: 一. 熵值法介绍 二. 熵值法实现 三. Python实现熵值法示例1 四. Python实现熵值法示例2 一. 熵值法介绍 熵值法是计算指标权重的经典算法之一,它是指用来判断某个指标的离散程度的数学方法.离散程度越大,即信息量越大,不确定性就越小,熵也就越小:信息量越小,不确定性越大,熵也越大.根据熵的特性,我们可以通过计算熵值来判断一个事件的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价…