每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:2013年末,Google发布的 word2vec工具引起了一帮人的热捧,大家几乎都认为它是深度学习在自然语言领域的一项了不起的应用,各种欢呼"深度学习在自然语言领域开始发力 了". 基于word2vec现在还出现了doc2vec,word2vec相比传统,考虑单词上下文的语义:但是doc2vec不仅考虑了单词上下文的语义,…
https://zhuanlan.zhihu.com/p/26306795 https://arxiv.org/pdf/1411.2738.pdf https://zhuanlan.zhihu.com/p/53194407 https://zhuanlan.zhihu.com/p/58805184   embedding入门到精通的paper,包括graph embedding Word2Vec算法原理: skip-gram: 用一个词语作为输入,来预测它周围的上下文 cbow: 拿一个词语的上…
Graph Embedding是推荐系统.计算广告领域最近非常流行的做法,是从word2vec等一路发展而来的Embedding技术的最新延伸:并且已经有很多大厂将Graph Embedding应用于实践后取得了非常不错的线上效果. word2vec和由其衍生出的item2vec是embedding技术的基础性方法,但二者都是建立在"序列"样本(比如句子.推荐列表)的基础上的.而在互联网场景下,数据对象之间更多呈现的是图结构.典型的场景是由用户行为数据生成的物品全局关系图,以及加入更多…
回望2017,基于深度学习的NLP研究大盘点 雷锋网 百家号01-0110:31 雷锋网 AI 科技评论按:本文是一篇发布于 tryolabs 的文章,作者 Javier Couto 针对 2017 年基于深度学习的自然语言处理研究进行了大盘点.雷锋网 AI 科技评论根据原文进行了编译. 在过去的几年里,深度学习(DL)架构和算法在诸如图像识别和语音处理等领域取得了世人瞩目的进步.然而在最开始的时候,深度学习在自然语言处理(Natural Language Processing, NLP)领域的…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由鹅厂优文发表于云+社区专栏 一.前言 二.深度学习模型 1. Factorization-machine(FM) FM = LR+ embedding 2. Deep Neural Network(DNN) 3. Factorisation-machine supported Neural Networks (FNN) 4. Product-based Neural Network(PNN) 5. Wide & Deep Lear…
基于图嵌入的高斯混合变分自编码器的深度聚类 Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 引言 这篇博文主要是对论文“Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embe…
好不容易学了一个深度学习的算法,大家是否比较爽了?但是回头想想,学这个是为了什么?吹牛皮吗?写论文吗?参加竞赛拿奖吗? 不管哪个原因,都显得有点校园思维了. 站在企业的层面,这样的方式显然是不符合要求的,如果只是学会了,公式推通了,但是没有在工作中应用上,那会被老大认为这是没有产出的.没有产出就相当于没有干活,没有干活的话就……呃……不说了. 下面就给大家弄些例子,说说在互联网广告这一块的应用吧. 一.对广告主的辅助 1.1基本概念 互联网广告的广告主其实往往有他们的困惑,他们不知道自己的目标人…
深度学习word2vec笔记之算法篇 声明:  本文转自推酷中的一篇博文http://www.tuicool.com/articles/fmuyamf,若有错误望海涵 前言 在看word2vec的资料的时候,经常会被叫去看那几篇论文,而那几篇论文也没有系统地说明word2vec的具体原理和算法,所以老衲就斗胆整理了一个笔记,希望能帮助各位尽快理解word2vec的基本原理,避免浪费时间. 当然如果已经了解了,就随便看看得了. 一. CBOW加层次的网络结构与使用说明 Word2vec总共有两种类…
深度学习word2vec笔记之基础篇 声明: 1)该博文是多位博主以及多位文档资料的主人所无私奉献的论文资料整理的.具体引用的资料请看参考文献.具体的版本声明也参考原文献 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应,更有些部分本来就是直接从其他博客复制过来的.如果某部分不小心侵犯了大家的利益,还望海涵,并联系老衲删除或修改,直到相关人士满意为止. 3)本人才疏学浅,整理总结的时候难免出错,还望各位前辈不吝指正,谢谢. 4)阅读本文需要机器学习.语言模型等等基础(如果没…
作者为falao_beiliu. 作者:杨超链接:http://www.zhihu.com/question/21661274/answer/19331979来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 最近几位google的研究人员发布了一个工具包叫word2vec,利用神经网络为单词寻找一个连续向量空间中的表示.这里整理一下思路,供有兴趣的同学参考. 这里先回顾一下大家比较熟悉的N-gram语言模型. 在自然语言任务里我们经常要计算一句话的概率.比如语音识别…
引子 Nebula Graph 的技术总监在 09.24 - 09.30 期间同开源中国·高手问答的小伙伴们以「图数据库的设计和实践」为切入点展开讨论,包括:「图数据库的存储设计」.「图数据库的计算设计」.「图数据库的架构设计」等方面内容,本文整理于他和开源中国小伙伴对图数据库的讨论内容~ 嘉宾·陈恒介绍 陈恒,开源的分布式图数据库 Nebula Graph 技术总监,图数据库领域专家 & HBase Committer.北京邮电大学硕士,曾就职于蚂蚁金服.猿题库.网易等公司,一直从事基础设施相…
一.导言 本教程适合对人工智能有一定的了解的同学,特别是对实际使⽤深度学习感兴趣的⼤学⽣.⼯程师和研究⼈员.但本教程并不要求你有任何深度学习或者机器学习的背景知识,我们将从头开始解释每⼀个概念.虽然深度学习技术与应⽤的阐述涉及了数学和编程,但你只需了解基础的数学和编程,例如基础的线性代数.微分和概率,以及基础的 Python 编程本教程将全⾯介绍深度学习从模型构造到模型训练的⽅⽅⾯⾯,以及它们在计算机视觉和⾃然语⾔处理中的应⽤.我们不仅将阐述算法原理,还将基于 Apache MXNet 来演⽰它…
根据用户的一些特征数据,如果能推测出用户的性别借此提高产品的服务质量.广告的精准性等都是极好的. 机器学习方法有很多,而且一般都可以达到不错的效果,比如svm或神经网络等. 本文使用的代码参考——<TensorFlow练习18: 根据姓名判断性别> 但原文代码已经无法直接跑起来,对于最新的TensorFlow需要酌情调整部分参数和函数名等,根据报错调整即可比较容易,文末我也可以考虑放出自己的代码,看心情吧 O(∩_∩)O~ 下面我们开始一步步剖析原文中用到的word embedding方法:…
caffe虽然已经安装了快一个月了,但是caffe使用进展比较缓慢,果然如刘老师说的那样,搭建起来caffe框架环境比较简单,但是完整的从数据准备->模型训练->调参数->合理结果需要一个比较长的过程,这个过程中你需要对caffe中很多东西,细节进行深入的理解,这样才可以知道为什么能有这样的结果,在训练或者fine-tuning时知道针对调整的方法.下面针对caffe中的使用进行讲解. 在使用过程中,caffe官网上提供了详细的使用说明,如果感觉仍然存在一些困难,可以使用谷歌或百度搜索自…
图嵌入应用场景:可用于推荐,节点分类,链接预测(link prediction),可视化等场景 一.考虑网络结构 1.DeepWalk (KDD 2014) (1)简介 DeepWalk = Random Walk + Skip-gram 论文链接 作者:Bryan Perozzi, Rami Al-Rfou, Steven Skiena 主要思想: 假设邻域相似,使用DFS构造邻域 step1:DeepWalk思想类似word2vec,word2vec是通过语料库中的句子序列来描述词与词的共现…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
虽然国内必须FQ才能登录YouTube,但想必大家都知道这个网站.基本上算是世界范围内视频领域的最大的网站了,坐拥10亿量级的用户,网站内的视频推荐自然是一个非常重要的功能.本文就focus在YouTube视频推荐的DNN算法,文中不但详细介绍了Youtube推荐算法和架构细节,还给了不少practical lessons and insights,很值得精读一番.下图便是YouTube APP视频推荐的一个例子. 在推荐系统领域,特别是YouTube的所在视频推荐领域,主要面临三个挑战: 规模…
http://blog.csdn.net/pirage/article/details/53424544 分词原理 本小节内容参考待字闺中的两篇博文: 97.5%准确率的深度学习中文分词(字嵌入+Bi-LSTM+CRF) 如何深度理解Koth的深度分词? 简单的说,kcws的分词原理就是: 对语料进行处理,使用word2vec对语料的字进行嵌入,每个字特征为50维. 得到字嵌入后,用字嵌入特征喂给双向LSTM, 对输出的隐层加一个线性层,然后加一个CRF就得到本文实现的模型. 于最优化方法,文本…
作者简介: 吴天龙  香侬科技researcher 公众号(suanfarensheng) 导言 图(graph)是一个非常常用的数据结构,现实世界中很多很多任务可以描述为图问题,比如社交网络,蛋白体结构,交通路网数据,以及很火的知识图谱等,甚至规则网格结构数据(如图像,视频等)也是图数据的一种特殊形式,因此图是一个很值得研究的领域. 针对graph的研究可以分为三类: 1.经典的graph算法,如生成树算法,最短路径算法,复杂一点的二分图匹配,费用流问题等等: 2.概率图模型,将条件概率表达为…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
最新最全的文章请关注我的微信公众号:数据拾光者. 摘要:本篇主要分析Youtube深度学习推荐系统,借鉴模型框架以及工程中优秀的解决方案从而应用于实际项目.首先讲了下用户.广告主和抖音这一类视频平台三者之间的关系:就是平台将视频资源作为商品免费卖给用户,同时将用户作为商品有偿卖给广告主,仅此而已.平台想获取更高的收益就必须提升广告的转化效率,而前提是吸引用户增加观看视频的时长,这里就涉及到视频推荐的问题.因为Youtube深度学习推荐系统是基于Embedding做的,所以第二部分讲了下Embed…
深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? 引用三年前一位网友的话来讲: “Steve Renals算了一下icassp录取文章题目中包含deep learning的数量,发现有44篇,而naacl则有0篇.有一种说法是,语言(词.句子.篇章等)属于人类认知过程中产生的高层认知抽象实体,而语音和图像属于较为底层的原始输入信号,所以后两者更适…
文本情感分类: 文本情感分类(一):传统模型 摘自:http://spaces.ac.cn/index.php/archives/3360/ 测试句子:工信处女干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作 分词工具 测试结果 结巴中文分词 工信处/ 女干事/ 每月/ 经过/ 下属/ 科室/ 都/ 要/ 亲口/ 交代/ 24/ 口/ 交换机/ 等/ 技术性/ 器件/ 的/ 安装/ 工作 中科院分词 工/n 信/n 处女/n 干事/n 每月/r 经过/p 下属/v 科室/n 都…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:高航 一. Wide&&Deep 模型 首先给出Wide && Deep [1] 网络结构: 本质上是线性模型(左边部分, Wide model)和DNN的融合(右边部分,Deep Model). 推荐系统需要解决两个问题: 记忆性: 比如通过历史数据知道"麻雀会飞","鸽子会飞" 泛化性: 推断在历史数据中从未见过的情形,"带翅膀的动物会飞" W…
1. 神经网络原理 神经网络模型,是上一章节提到的典型的监督学习问题,即我们有一组输入以及对应的目标输出,求最优模型.通过最优模型,当我们有新的输入时,可以得到一个近似真实的预测输出. 我们先看一下如何实现这样一个简单的神经网络: 输入 x = [1,2,3], 目标输出 y = [-0.85, 0.72] 中间使用一个包含四个单元的隐藏层. 结构如图: 求所需参数 w10w10 w20w20 b10b10 b20b20, 使得给定输入 x 下得到的输出 ,和目标输出 y^y^ 之间的平均均方误…
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.com/ty4z2008/Qix/blob/master/dl.md)共500条,[篇目二](https://github.com/ty4z2008/Qix/blob/master/dl2.md)开始更新------#####希望转载的朋友**一定要保留原文链接**,因为这个项目还在继续也在不定期更新.希望看到…
PaddlePaddle垃圾邮件处理实战(二) 前文回顾   在上篇文章中我们讲了如何用支持向量机对垃圾邮件进行分类,auc为73.3%,本篇讲继续讲如何用PaddlePaddle实现邮件分类,将深度学习方法运用到文本分类中. 构建网络模型   用PaddlePaddle来构建网络模型其实很简单,首先得明确paddlepaddle的输入数据的格式要求,知道如何构建网络模型,以及如何训练.关于输入数据的预处理等可以参考我之前写的这篇文章[深度学习系列]PaddlePaddle之数据预处理.首先我们…
推文<阿里凑单算法首次公开!基于Graph Embedding的打包购商品挖掘系统解析>笔记 从17年5月份开始接触Graph Embedding,学术论文读了很多,但是一直不清楚这技术是否真的能应用于工业界? 最近导师转发给我一篇文章,名为<阿里凑单算法首次公开!基于Graph Embedding的打包购商品挖掘系统解析>,眼界大开! 今天就阅读这篇推文,做一些摘录和笔记...侵删! 传送门:http://mp.weixin.qq.com/s/diIzbc0tpCW4xhbIQu…