AVL树插入和删除】的更多相关文章

一.AVL树简介 AVL树是一种平衡的二叉查找树. 平衡二叉树(AVL 树)是一棵空树,或者是具有下列性质的二叉排序树:    1它的左子树和右子树都是平衡二叉树,    2且左子树和右子树高度之差的绝对值不超过 1. 定义平衡因子(BF)为该结点左子树的高度减去右子树的高度所得的高度差:AVL 树任一结点平衡因子只能取-1,0,1: 二.AVL树插入 插入:先查找被插入元素,如果存在,则不操作:如果不存在,则插入. 插入后就是调整和选择的问题. 我们先看一下我们会面临怎么样的问题: 离插入点最…
B树--插入和删除 B树的插入 5阶B数--结点关键字个数向上取整m/2-1≤n≤m-1 即2≤n≤4 连续插入5个元素后,超出来了. 在插入key后,若导致原结点关键字数超过上限,则从中间位置(m/2向上取整)将其中的关键字分为两个部分,左部分包含的关键字放在原结点中,右部分包含的关键字放在新节点中,中间位置(m/2向上取整)的结点插入原结点的父节点 新元素一定是插入到最底层"终端结点",用"查找"来确定插入位置 在插入key后,若导致原结点关键字数超过上限,则从…
二叉平衡树 全图基础解释参考链接:http://btechsmartclass.com/data_structures/avl-trees.html 二叉平衡树:https://www.cnblogs.com/zhuwbox/p/3636783.html 前提:会写 求二叉树的深度 背景知识: 为什么需要二叉平衡树 答:因为二叉搜索树在理想状态下(也就是平衡树),查找的时间复杂度为log2n ,但是如果很不幸, ​ 插入的数据都是有序数据的话,那么会退化成O(n)的线性时间复杂度.因为几乎退化成…
为了提高二插排序树的性能,规定树中的每个节点的左子树和右子树高度差的绝对值不能大于1.为了满足上面的要求需要在插入完成后对树进行调整.下面介绍各个调整方式. 右单旋转 如下图所示,节点A的平衡因子(左子树高度减右子树高度)为1.由于在节点A的左孩子B的左子树上插入了新节点,导致B的左子树高度增加1,从而导致A的平衡因子为2,这时为了保持平衡需要对树进行调整. 旋转的方法就是将A的变为B的右子树,将B的右子树变为A的左子树. 示例代码: private Node RRotate(Node node…
建立AVL树 class AVLNode(object): def __init__(self,data): self.data = data self.lchild = None self.rchild = None self.parent = None self.bf = 0 class AVLTree(object) def __init__(self,li=None) self.root = None if li: for val in li: self.insert(self.root…
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5687 2016百度之星资格赛C题,直接套用字典树,顺便巩固了一下自己对字典树的理解 #include<stdio.h> #include<string.h> struct node{ ]; int cnt; void init(){ cnt = ;//计数 memset(next,-,sizeof(next)); } }; ]; ;//记录节点数 void insert(char *s){…
AVL 树要在插入和删除结点后保持平衡,旋转操作必不可少.关键是理解什么时候应该左旋.右旋和双旋.在Youtube上看到一位老师的视频对这个概念讲解得非常清楚,再结合算法书和网络的博文,记录如下. 1.1 AVL 的旋转 一棵AVL树是其每个节点的左子树和右子树的高度差最多为1的二叉查找树(空树高度定义为-1).AVL树插入和删除时都可能破坏AVL的特性,可以通过对树进行修正来保证特性,修正方法称为旋转. 下面以4个插入操作为例,说明不同旋转对应的场景. 1.1.1 LL-R 插入结点为6,沿着…
AVL树.splay树(伸展树)和红黑树比较 一.AVL树: 优点:查找.插入和删除,最坏复杂度均为O(logN).实现操作简单 如过是随机插入或者删除,其理论上可以得到O(logN)的复杂度,但是实际情况大多不是随机的.如果是随机的,则AVL    树能够达到比RB树更优的结果,因为AVL树的高度更低.如果只进行插入和查找,则AVL树是优于RB树的,因为RB树    更多的优势还是在删除动作上. 缺点:1)借助高度或平衡因子,为此需要改造元素结构,或额外封装-->伸展树可以避免. 2)实测复杂…
这篇文章用来复习AVL的平衡操作,分别会介绍其旋转操作的递归与非递归实现,但是最终带有插入示例的版本会以递归呈现. 下面这张图绘制了需要旋转操作的8种情况.(我要给做这张图的兄弟一个赞)后面会给出这八种情况对应平衡实现. [1] 情况1-2: 这种需要旋转的结构一般称之为LL型,需要右旋 (顺时针旋转). 我用一个图来抽象一下这两个情况,画的不好,我尽量表达吧. 此时需要对A进行平衡操作,方法为: 将A的左子树换为B的右子树. B的右子树换为A. 非递归实现的代码为: void rotate_r…
在上一篇博文中我们提到了,如果对普通二叉查找树进行随机的插入.删除,很可能导致树的严重不平衡 所以这一次,我们就来介绍一种最老的.可以实现左右子树"平衡效果"的树(或者说算法),即AVL树.其名字与其发明者有关,这种数据结构的发明者为Adelson-Velskii和Landis,所以这种树或者说这种算法就叫AVL树. 那么,AVL树如何实现"平衡"呢? 首先我们来想一想,除了肉眼观察外,如何看出一棵树的"平衡程度"?我们知道任一结点都有两个属性:…