题意:求方程x2-Dy2=1的最小正整数解 思路:用连分数法解佩尔方程,关键是找出√d的连分数表示的循环节.具体过程参见:http://m.blog.csdn.net/blog/wh2124335/8871535 当d为完全平方数时无解 将√d表示成连分数的形式,例如: 当d不为完全平方数时,√d为无理数,那么√d总可以表示成: 记 当n为偶数时,x0=p,y0=q:当n为奇数时,x0=2p2+1,y0=2pq 求d在1000以内佩尔方程的最小正整数解的c++打表程序(正常跑比较慢,这个题需要离…
Time limit 1000 ms Memory limit 131072 kB The life of Little A is good, and, he managed to get enough money to run a hotel. The best for him is that he need not go to work outside, just wait for the money to go into his pocket. Little A wants everyth…
这两题都是求解同余方程,并要求出最小正整数解的 对于给定的Ax=B(mod C) 要求x的最小正整数解 首先这个式子可转化为 Ax+Cy=B,那么先用exgcd求出Ax+Cy=gcd(A,C)的解x 然后这个式子的一个特解就是 (B/gcd(A,C))* x 要注意如果gcd(A,C)无法整除B,那么这个式子无解 然后是求出最小整数解 Ax+Cy=B 方程的通解是 x+k*C/gcd(A,C), 另s=C/gcd(A,C) 所以最小整数解是(x%s+s)%s 青蛙题 /* x+km=y+kn(m…
#include<bits/stdc++.h> using namespace std; int gcd(int a,int b) {return b?gcd(b,a%b):a;} int exgcd(int &x,int &y,int a,int b) { if(!b) { x=1; y=0; return a; } int r=exgcd(x,y,b,a%b); int t=x; x=y; y=t-a/b*y; return r; } bool cal(int &x…
题意: 青蛙 A 和 青蛙 B ,在同一纬度按照相同方向跳跃相同步数,A的起点为X ,每一步距离为m,B的起点为Y,每一步距离为 n,一圈的长度为L,求最小跳跃步数. 思路: 一开始按照追击问题来写,结果发现会求出来小数,而且按照追击问题写的话,一圈就能相遇,但是!青蛙的步数可没有小数,而且青蛙是跳跃的,显然不能在空中相遇吧. 所以咧,先列出一个追击的式子 ,设步数为 t ,整数为K(转了K圈以后他们才到同一个地方) t * m + x = t * n + y + k * L ===> t *…
题目 给定方程f和值z,找出给定方程f(x,y)=z的正整数解x,y.f(x,y)关于x.y都是严格单调的. 题目保证 f(x, y) == z 的解处于 1 <= x, y <= 1000 的范围内. 方案 暴力双层循环O(N*N) 暴力,双层循环遍历,由于f是单调的,所以一旦遇到大于,则break.同样遇到等于,也可以加入结果并break.时间复杂度O(N*N),N是最大值1000. public List<List<Integer>> findSolution(C…
题目描述: class Solution: def findSolution(self, customfunction: 'CustomFunction', z: int) -> List[List[int]]: res = [] ,): ,): if customfunction.f(i,j) == z: res.append([i,j]) if customfunction.f(i,j) > z: break return res 另:O(N) class Solution(object)…
//#pragma comment(linker, "/STACK:1024000000,1024000000") //#pragma GCC optimize(2) #include <algorithm> #include <iostream> #include<sstream> #include<iterator> #include<cstring> #include<string> #include<…
佩尔方程x*x-d*y*y=1,当d不为完全平方数时,有无数个解,并且知道一个解可以推其他解. 如果d为完全平方数时,可知佩尔方程无解. 假设(x0,y0)是最小正整数解. 则: xn=xn-1*x0+d*yn-1*y0 yn=xn-1*y0+yn-1*x0 证明只需代入. 如果忘记公式可以自己用(x0*x0-d*y0*y0)*(x1*x1-d*y1*y1)=1 推. 这样只要暴力求出最小特解,就可以用快速幂求出任意第K个解. Street Numbers Time Limit: 1000MS…
一.Pell方程 形如x^2-dy^2=1的不定方程叫做Pell方程,其中d为正整数,则易得当d是完全平方数的时候这方程无正整数解,所以下面讨论d不是完全平方数的情况. 设Pell方程的最小正整数解为x0,y0则它的第n个正整数解满足xn+yn根号d=(x0+y0根号d)^n吧啦吧啦巴吧啦吧啦吧啦吧啦吧啦吧啦吧啦吧啦吧啦吧啦吧啦吧啦拉巴拉巴拉,然后随便撸撸就撸出递推式子了……OI里一般都要求第n个解,所以先暴力出最小解,然后快速幂搞,,,,,,,,,,, ————————————————————…