「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME pre=${name%.*} g++ -O2 $dir/$name -o $pre -g -Wall -std=c++11 if test $? -eq 0; then gnome-terminal -x bash -c "time $dir/$pre;echo;read;" fi*/ #…
[CodePlus 2017 11月赛&洛谷P4058]木材 Description 有 n棵树,初始时每棵树的高度为 Hi ,第 i棵树每月都会长高 Ai.现在有个木料长度总量为 S的订单,客户要求每块木料的长度不能小于 L ,而且木料必须是整棵树(即不能为树的一部分).现在问你最少需要等多少个月才能满足订单. 输入格式: 第一行 3个用空格隔开的非负整数 n,S,L,表示树的数量.订单总量和单块木料长度限制. 第二行 n 个用空格隔开的非负整数,依次为 H1,H2,...,Hn . 第三行…
洛谷 P2197 nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取完,不能不取.每次只能从一堆里取.最后没石子可取的人就输了.假如甲是先手,且告诉你这n堆石子的数量,他想知道是否存在先手必胜的策略. 输入输出格式 输入格式: 第一行一个整数T<=10,表示有T组数据 接下来每两行是一组数据,第一行一个整数n,表示有n堆石子,n<=10000; 第二行有n个数,表…
洛谷 P1965 转圈游戏 传送门 思路 每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,--,依此类推,第n − m号位置上的小伙伴走到第 0 号位置,第n-m+1 号位置上的小伙伴走到第 1 号位置,--,第 n-1 号位置上的小伙伴顺时针走到第m-1 号位置. 因为是个圈,转到\(n\)就变成\(1\),所以可以进行取模运算(即模\(n\)),\((x+10^k*m)\% n\)就是\(x\)移动\(10^k\)次之后所在的位置,但是求\…
\(\mathscr{Description}\)   Link.   给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的).   \(|S|\le3\times10^6\). \(\mathscr{Solution}\)   注意到一个显然的事实,对于某个前缀 \(S[:i]\) 以及两个起始下标 \(p,q\),若已有 \(S[p:i]<S[q:i]\),那么在所有的 \(j>i\) 中,都有 \(S[p:j]<S[q:j]\).换言之,最终…
\(\mathcal{Description}\)   OurOJ & 洛谷 P4372(几乎一致)   设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排序,则重复冒泡排序零次或多次,直到存在某个位置 \(p\in[l,r)\),满足 \(\max_{i=l}^p\{a_i\}<\min_{i=p+1}^r\{a_i\}\),则递归入 \([l,p]\) 和 \((p,r]\),直到区间长度为 \(1\) 时停止.求所有冒泡排序所操作的区间长度之和.  …
\(\mathcal{Description}\)   Link.(洛谷上这翻译真的一言难尽呐.   给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 \(u\) 到 \(v\) 的代价为 \(a\),\(v\) 到 \(u\) 的代价为 \(b\).求从结点 \(1\) 开始的,经过每个点至少一次,每条边恰好一次,最后回到结点 \(1\) 的路径,使得每条边代价的最大值最小.   \(n,a,b\le10^3\),\(m\le2\times10^…
\(\mathcal{Description}\)   Link & 双倍经验.   给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\{c_n\}\) 的个数,使得: \(\forall i~~~~c_i=0\lor c_i\in[a_i,b_i)\). \(\forall i<j~~~~c_i\not=0\land c_j\not=0\Rightarrow c_i<c_j\).   对 \(10^9+7\) 取模.   \(n…
题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照长度来排一个序. 如果询问和加边长度相同,这加边优先. 对于每一个连通块进行权值线段树. 权值线段树解决\(k\)大的问题. 每一次合并,并查集判联通,线段树暴力合并. 时间复杂度\(O(nlogn)\). 代码 #include <bits/stdc++.h> using namespace s…
题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\sum_{j>i} \frac{q_iq_j}{(i-j)^2}\] 根据题目给出的定义,带入\(E\)中 \[E_i=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^{n}\frac{q_j}{(j-i)^2}\] 形式稍微改变了一下,本质一样 需要处理…